Habituation

Habituation is a form of non-associative learning in which an organism’s non-reinforced response to a stimulus decreases after repeated or prolonged presentations of that stimulus.[1] For example, organisms may habituate to repeated sudden loud noises when they learn that these have no consequences.[2]

Habituation can occur in responses that habituate include those that involve an entire organism or specific biological component systems of an organism. The broad ubiquity of habituation across all forms of life has led to it being called "the simplest, most universal form of learning...as fundamental a characteristic of life as DNA."[3] Functionally, habituation is thought to free up cognitive resources for other stimuli that are associated with biologically important events by diminishing the response to inconsequential stimuli.

A progressive decline of a behavior in a habituation procedure may also reflect nonspecific effects such as fatigue, which must be ruled out when the interest is in habituation.[4] Habituation is relevant in psychiatry and psychopathology, as several neuropsychiatric conditions including autism, schizophrenia, migraine, and Tourette syndrome show reduced habituation to a variety of stimulus-types both simple and complex.[5]

  1. ^ Bouton, M.E. (2007). Learning and behavior: A contemporary synthesis. MA Sinauer: Sunderland. Archived from the original on 2012-11-27. Retrieved 2011-10-20.
  2. ^ Cherry, K. "What is habituation". About.com. Archived from the original on March 4, 2016. Retrieved December 27, 2013.
  3. ^ Dethier, V. G. (1976). The hungry fly: a physiological study of the behavior associated with feeding. Harvard University Press
  4. ^ Fennel, C. T. (2011). "Habituation procedures". In E. Hoff (ed.). Research methods in child language: A practical guide (PDF). Hoboken, NJ: John Wiley & Sons.
  5. ^ McDiarmid, T.A.; Bernardos, A.C.. (2017). "Habituation is altered in neuropsychiatric disorders—a comprehensive review with recommendations for experimental design and analysis". Neuroscience & Biobehavioral Reviews. 1 (1): 1–43. doi:10.1016/j.neubiorev.2017.05.028. PMID 28579490. S2CID 207094378.