Harmonic pitch class profiles

Harmonic pitch class profiles (HPCP) is a group of features that a computer program extracts from an audio signal, based on a pitch class profile—a descriptor proposed in the context of a chord recognition system.[1] HPCP are an enhanced pitch distribution feature that are sequences of feature vectors that, to a certain extent, describe tonality, measuring the relative intensity of each of the 12 pitch classes of the equal-tempered scale within an analysis frame. Often, the twelve pitch spelling attributes are also referred to as chroma and the HPCP features are closely related to what is called chroma features or chromagrams.

By processing musical signals, software can identify HPCP features and use them to estimate the key of a piece,[2] to measure similarity between two musical pieces (cover version identification),[3] to perform content-based audio retrieval (audio matching),[4] to extract the musical structure (audio structure analysis),[5] and to classify music in terms of composer, genre or mood. The process is related to time-frequency analysis. In general, chroma features are robust to noise (e.g., ambient noise or percussive sounds), independent of timbre and instrumentation and independent of loudness and dynamics.

HPCPs are tuning independent and consider the presence of harmonic frequencies, so that the reference frequency can be different from the standard A 440 Hz. The result of HPCP computation is a 12, 24, or 36-bin octave-independent histogram depending on the desired resolution, representing the relative intensity of each 1, 1/2, or 1/3 of the 12 semitones of the equal tempered scale.

  1. ^ Fujishima, T. Realtime chord recognition of musical sound: a system using Common Lisp Music, ICMC, Beijing, China, 1999, pp. 464–467.
  2. ^ Gomez, E. Herrera, P. (2004). Estimating The Tonality Of Polyphonic Audio Files: Cognitive Versus Machine Learning Modelling Strategies. ISMIR 2004 – 5th International Conference on Music Information Retrieval.
  3. ^ Joan Serra, Emilia Gomez, Perfecto Herrera, and Xavier Serra Chroma Binary Similarity and Local Alignment Applied to Cover Song Identification August, 2008
  4. ^ Müller, Meinard; Kurth, Frank; Clausen, Michael (2005). "Audio Matching via Chroma-Based Statistical Features" (PDF). Proceedings of the International Conference on Music Information Retrieval: 288–295.
  5. ^ Paulus, Jouni; Müller, Meinard; Klapuri, Anssi (2010). "Audio-based Music Structure Analysis" (PDF). Proceedings of the International Conference on Music Information Retrieval: 625–636.