This article contains several duplicated citations. The reason given is: DuplicateReferences detected: (November 2024)
|
General relativity |
---|
Hawking radiation is the theoretical emission released outside a black hole's event horizon. This is counterintuitive because once ordinary electromagnetic radiation is inside the event horizon, it cannot escape. It is named after the physicist Stephen Hawking, who developed a theoretical argument for its existence in 1974.[1] Hawking radiation is predicted to be extremely faint and is many orders of magnitude below the current best telescopes' detecting ability.
Hawking radiation reduces the mass and rotational energy of black holes and is therefore also theorized to cause black hole evaporation. Because of this, black holes that do not gain mass through other means are expected to shrink and ultimately vanish.
For all except the smallest black holes, this happens extremely slowly. The radiation temperature, called Hawking temperature, is inversely proportional to the black hole's mass, so micro black holes are predicted to be larger emitters of radiation than larger black holes and should dissipate faster per their mass. As such, if small black holes exist such as permitted by the hypothesis of primordial black holes, they ought to lose mass more rapidly as they shrink, leading to a final cataclysm of high energy radiation alone.[2] Such radiation bursts have not yet been detected.