Heat transfer physics

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons (lattice vibration waves), electrons, fluid particles, and photons.[1][2][3][4][5] Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes (or kinetics) are governed by the rates at which various related physical phenomena occur, such as (for example) the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level (atom or molecule length scale) to macroscale are the laws of thermodynamics, including conservation of energy.

  1. ^ Tien, Chang-Lin; Majumdar, Arunava; Gerner, Frank M., eds. (1998). Microscale energy transport. Washington, D.C.: Taylor & Francis. ISBN 978-1560324591.
  2. ^ Chen, G. (2004). Nanoscale energy transport and conversion: a parallel treatment of electrones, molecules, phonons, and photons. New York: Oxford. ISBN 978-0195159424.
  3. ^ Zhang, Z. M. (2007). Nano/microscale heat transfer ([Online-Ausg.]. ed.). New York: McGraw-Hill. ISBN 978-0071436748.
  4. ^ Volz, S. (2010). Microscale and Nanoscale Heat Transfer (Topics in Applied Physics). Springer. ISBN 978-3642071584.
  5. ^ Kaviany, M. (2014). Heat transfer physics (2nd ed.). Cambridge: Cambridge University Press. ISBN 978-1-107041783.