The Heckman correction is a statistical technique to correct bias from non-randomly selected samples or otherwise incidentally truncated dependent variables, a pervasive issue in quantitative social sciences when using observational data.[1] Conceptually, this is achieved by explicitly modelling the individual sampling probability of each observation (the so-called selection equation) together with the conditional expectation of the dependent variable (the so-called outcome equation). The resulting likelihood function is mathematically similar to the tobit model for censored dependent variables, a connection first drawn by James Heckman in 1974.[2] Heckman also developed a two-step control function approach to estimate this model,[3] which avoids the computational burden of having to estimate both equations jointly, albeit at the cost of inefficiency.[4] Heckman received the Nobel Memorial Prize in Economic Sciences in 2000 for his work in this field.[5]