Hemoglobin subunit beta

HBB
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesHBB, CD113t-C, beta-globin, hemoglobin subunit beta, ECYT6
External IDsOMIM: 141900; MGI: 5474850; HomoloGene: 68066; GeneCards: HBB; OMA:HBB - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000518

NM_008220

RefSeq (protein)

NP_000509

NP_032246
NP_001188320
NP_001265090

Location (UCSC)Chr 11: 5.23 – 5.23 MbChr 7: 103.46 – 103.46 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
In human, the HBB gene is located on chromosome 11 at position p15.5.

Hemoglobin subunit beta (beta globin, β-globin, haemoglobin beta, hemoglobin beta) is a globin protein, coded for by the HBB gene, which along with alpha globin (HBA), makes up the most common form of haemoglobin in adult humans, hemoglobin A (HbA).[5] It is 147 amino acids long and has a molecular weight of 15,867 Da. Normal adult human HbA is a heterotetramer consisting of two alpha chains and two beta chains.

β-globin is encoded by the HBB gene on human chromosome 11. Mutations in the gene produce several variants of the proteins which are implicated with genetic disorders such as sickle-cell disease and beta thalassemia, as well as beneficial traits such as genetic resistance to malaria.[6][7] At least 50 disease-causing mutations in this gene have been discovered.[8]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000244734Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000073940Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: HBB hemoglobin, beta".
  6. ^ Sabeti PC (2008). "Natural selection: uncovering mechanisms of evolutionary adaptation to infectious disease". Nature Education. 1 (1): 13.
  7. ^ Kwiatkowski DP (2005). "How malaria has affected the human genome and what human genetics can teach us about malaria". The American Journal of Human Genetics. 77 (2): 171–192. doi:10.1086/432519. PMC 1224522. PMID 16001361.
  8. ^ Šimčíková D, Heneberg P (December 2019). "Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases". Scientific Reports. 9 (1): 18577. Bibcode:2019NatSR...918577S. doi:10.1038/s41598-019-54976-4. PMC 6901466. PMID 31819097.