7-simplex |
Hexicated 7-simplex |
Hexitruncated 7-simplex |
Hexicantellated 7-simplex |
Hexiruncinated 7-simplex |
Hexicantitruncated 7-simplex |
Hexiruncitruncated 7-simplex |
Hexiruncicantellated 7-simplex |
Hexisteritruncated 7-simplex |
Hexistericantellated 7-simplex |
Hexipentitruncated 7-simplex |
Hexiruncicantitruncated 7-simplex |
Hexistericantitruncated 7-simplex |
Hexisteriruncitruncated 7-simplex |
Hexisteriruncicantellated 7-simplex |
Hexipenticantitruncated 7-simplex |
Hexipentiruncitruncated 7-simplex |
Hexisteriruncicantitruncated 7-simplex |
Hexipentiruncicantitruncated 7-simplex |
Hexipentistericantitruncated 7-simplex |
Hexipentisteriruncicantitruncated 7-simplex (Omnitruncated 7-simplex) | |||
Orthogonal projections in A7 Coxeter plane |
---|
In seven-dimensional geometry, a hexicated 7-simplex is a convex uniform 7-polytope, including 6th-order truncations (hexication) from the regular 7-simplex.
There are 20 unique hexications for the 7-simplex, including all permutations of truncations, cantellations, runcinations, sterications, and pentellations.
The simple hexicated 7-simplex is also called an expanded 7-simplex, with only the first and last nodes ringed, is constructed by an expansion operation applied to the regular 7-simplex. The highest form, the hexipentisteriruncicantitruncated 7-simplex is more simply called a omnitruncated 7-simplex with all of the nodes ringed.