Hicks equation

In fluid dynamics, Hicks equation, sometimes also referred as Bragg–Hawthorne equation or Squire–Long equation, is a partial differential equation that describes the distribution of stream function for axisymmetric inviscid fluid, named after William Mitchinson Hicks, who derived it first in 1898.[1][2][3] The equation was also re-derived by Stephen Bragg and William Hawthorne in 1950 and by Robert R. Long in 1953 and by Herbert Squire in 1956.[4][5][6] The Hicks equation without swirl was first introduced by George Gabriel Stokes in 1842.[7][8] The Grad–Shafranov equation appearing in plasma physics also takes the same form as the Hicks equation.

Representing as coordinates in the sense of cylindrical coordinate system with corresponding flow velocity components denoted by , the stream function that defines the meridional motion can be defined as

that satisfies the continuity equation for axisymmetric flows automatically. The Hicks equation is then given by [9]

where

where is the total head, c.f. Bernoulli's Principle. and is the circulation, both of them being conserved along streamlines. Here, is the pressure and is the fluid density. The functions and are known functions, usually prescribed at one of the boundary; see the example below. If there are closed streamlines in the interior of the fluid domain, say, a recirculation region, then the functions and are typically unknown and therefore in those regions, Hicks equation is not useful; Prandtl–Batchelor theorem provides details about the closed streamline regions.

  1. ^ Hicks, W. M. (1898). Researches in vortex motion. Part III. On spiral or gyrostatic vortex aggregates. Proceedings of the Royal Society of London, 62(379–387), 332–338. https://royalsocietypublishing.org/doi/pdf/10.1098/rspl.1897.0119
  2. ^ Hicks, W. M. (1899). II. Researches in vortex motion.—Part III. On spiral or gyrostatic vortex aggregates. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, (192), 33–99. https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1899.0002
  3. ^ Smith, S. G. L., & Hattori, Y. (2012). Axisymmetric magnetic vortices with swirl. Communications in Nonlinear Science and Numerical Simulation, 17(5), 2101–2107.
  4. ^ Bragg, S. L. & Hawthorne, W. R. (1950). Some exact solutions of the flow through annular cascade actuator discs. Journal of the Aeronautical Sciences, 17(4), 243–249
  5. ^ Long, R. R. (1953). Steady motion around a symmetrical obstacle moving along the axis of a rotating liquid. Journal of Meteorology, 10(3), 197–203.
  6. ^ Squire, H. B. (1956). Rotating fluids. Surveys in Mechanics. A collection of Surveys of the present position of Research in some branches of Mechanics, written in Commemoration of the 70th Birthday of Geoffrey Ingram Taylor, Eds. G. K. Batchelor and R. M. Davies. 139–169
  7. ^ Stokes, G. (1842). On the steady motion of incompressible fluids Trans. Camb. Phil. Soc. VII, 349.
  8. ^ Lamb, H. (1993). Hydrodynamics. Cambridge university press.
  9. ^ Batchelor, G. K. (1967). An introduction to fluid dynamics. Section 7.5. Cambridge university press. section 7.5, p. 543-545