In statistical theory, the field of high-dimensional statistics studies data whose dimension is larger (relative to the number of datapoints) than typically considered in classical multivariate analysis. The area arose owing to the emergence of many modern data sets in which the dimension of the data vectors may be comparable to, or even larger than, the sample size, so that justification for the use of traditional techniques, often based on asymptotic arguments with the dimension held fixed as the sample size increased, was lacking.[1][2]
There are several notions of high-dimensional analysis of statistical methods including: