Hongxing Jiang

Hongxing Jiang

Hongxing Jiang (Chinese: 江红星) is a Chinese-American physicist and engineer working in the field of wide bandgap semiconductors and photonic devices. He is the original inventor of MicroLED. In 2000, the research team led by Hongxing Jiang and Jingyu Lin (Chinese: 林景瑜) realized the operation of the first MicroLED and passive driving MicroLED microdisplay.[1][2][3][4][5][6] In 2009, he and his colleagues at III-N Technology, Inc. and Texas Tech University patented and realized the first active driving high-resolution and video-capable microLED microdisplay in VGA format (640 x 480 pixels) via heterogeneous integration of MicroLED array with CMOS active-matrix driver [7] and the work was published in the following years.[8][9][10][11][12]

The single-chip high-voltage DC/AC LEDs via on-chip integration of mini- and MicroLED arrays developed by their team in 2002 have been widely commercialized for general solid-state lighting and automobile headlights.[13][14][15][16][17]

Under the support of DARPA-MTO’s SUVOS,[18] CMUVT,[19] DUVAP,[20] and VIGIL[21] programs, their research team has contributed to the early developments of III-nitride deep UV emitters and detectors and InGaN energy devices[22][23][24] in the United States. These include the development of the first deep UV picosecond time-resolved optical spectroscopy system (down to 195 nm) for characterizing ultrawide bandgap (UWBG) semiconductor materials,[25] the first prediction and confirmation that Al-rich AlGaN deep UV emitters emit light in the transverse-magnetic (TM) mode,[26][27] the demonstration of the first UV/blue photonic crystal LED (PC-LED),[28][29] and AlN deep UV avalanche detectors with an ultrahigh specific detectivity.[30] His team was also one of the first to determine the Mg acceptor energy level in AlN optically[31] and electrically[32] and to demonstrate the conductivity control in Al-rich AlGaN.[33][34][35][36] Supported by ARPA-E, their research team has developed crystal growth technologies for producing thick epitaxial films (or quasi-bulk crystals) of hexagonal boron nitride (h-BN) UWBG semiconductor in large wafer sizes and realized h-BN thermal neutron detectors with a record high detection efficiency.[37][38][39][40]

While in graduate school, Hongxing Jiang and Jingyu Lin developed the first analytical formalism based on the Newtonian gravitational force to describe the orbit of a star moving into and out of a galaxy and predicated the phenomenon of mass precession.[41] This effect has been used by astrophysicists to constrain the abundance of dark matter in the solar system and the Galactic Centre.[42][43]

  1. ^ Jiang, Hongxing; Lin, Jingyu (March 2023). "How we made the microLED". Nature Electronics. 6 (3): 257–257. doi:10.1038/s41928-023-00940-0. ISSN 2520-1131.
  2. ^ Hongxing Jiang; Jingyu Lin, Sixuan Jin, and Jing Li. "US patent 6410940, Micro-size LED and detector arrays for mini-displays, hyperbright light emitting diodes, lighting, and UV detector and imaging sensor applications". worldwide.espacenet.com. Retrieved 2022-01-05.{{cite web}}: CS1 maint: multiple names: authors list (link)
  3. ^ Jin, S. X.; Li, J.; Lin, J. Y.; Jiang, H. X. (2000-11-13). "GaN microdisk light emitting diodes". Applied Physics Letters. 76 (5): 631–633. Bibcode:2000ApPhL..76..631J. doi:10.1063/1.125841. ISSN 0003-6951.
  4. ^ Jiang, H. X.; Jin, S. X.; Li, J.; Shakya, J.; Lin, J. Y. (2001-02-26). "III-nitride blue microdisplays". Applied Physics Letters. 78 (9): 1303–1305. Bibcode:2001ApPhL..78.1303J. doi:10.1063/1.1351521. ISSN 0003-6951.
  5. ^ Jiang, Hongxing; Lin, Jingyu (June 2001). "Advances in III-nitride micro-size light emitters". III-Vs Review. 14 (5): 32–37. doi:10.1016/S0961-1290(01)80261-1.
  6. ^ Jin, S. X.; Shakya, J.; Lin, J. Y.; Jiang, H. X. (2001-05-28). "Size dependence of III-nitride microdisk light-emitting diode characteristics". Applied Physics Letters. 78 (22): 3532–3534. Bibcode:2001ApPhL..78.3532J. doi:10.1063/1.1376152. ISSN 0003-6951.
  7. ^ Jacob Day, Jing Li, Donald Lie, Zhaoyang Fan, Jingyu Lin, and Hongxing Jiang. "US 9047818 CMOS IC for micro-emitter based microdisplay". worldwide.espacenet.com. Retrieved 2022-01-05.{{cite web}}: CS1 maint: multiple names: authors list (link)
  8. ^ Day, Jacob; Li, J.; Lie, D. Y. C.; Bradford, Charles; Lin, J. Y.; Jiang, H. X. (2011-07-18). "III-Nitride full-scale high-resolution microdisplays". Applied Physics Letters. 99 (3): 031116. Bibcode:2011ApPhL..99c1116D. doi:10.1063/1.3615679. ISSN 0003-6951.
  9. ^ Jingyu Lin, Jacob Day, Donald Lie, Hongxing Jiang, Jing Li and Charles Bradford. "High-resolution group III nitride microdisplays". SPIE Newsroom: 14 December 2011.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Lin, J. Y.; Jiang, H. X. (2020-03-09). "Development of microLED". Applied Physics Letters. 116 (10): 100502. Bibcode:2020ApPhL.116j0502L. doi:10.1063/1.5145201. ISSN 0003-6951. S2CID 216297255.
  11. ^ Micro LEDs. Hongxiang Jiang, Jingyu Lin. Cambridge, MA. 2021. ISBN 978-0-12-823063-3. OCLC 1256450564.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  12. ^ Jiang, H. X.; Lin, J. Y. (2013-05-06). "Nitride micro-LEDs and beyond - a decade progress review". Optics Express. 21 (S3): A475-84. Bibcode:2013OExpr..21A.475J. doi:10.1364/OE.21.00A475. ISSN 1094-4087. PMID 24104436.
  13. ^ JIANG HONGXING; LIN JINGYU; JIN SIXUAN. "US patent 6,957,899, Light emitting diodes for high AC voltage operating and general lighting". worldwide.espacenet.com. Retrieved 2022-01-05.{{cite web}}: CS1 maint: multiple names: authors list (link)
  14. ^ Fan, Zhaoyang; Jiang, Hongxing; Lin, Jingyu. "US patent 7,221,044, Heterogeneous integrated high voltage DC/AC light emitter". worldwide.espacenet.com. Retrieved 2022-01-05.{{cite web}}: CS1 maint: multiple names: authors list (link)
  15. ^ Fan, Zhaoyang; Jiang, Hongxing; Lin, Jingyu. "US patent 7,535,028, Micro-LED based high voltage AC/DC indicator lamp".{{cite web}}: CS1 maint: multiple names: authors list (link)
  16. ^ Fan, Zhaoyang; Jiang, Hongxing; Lin, Jingyu. "US patent 8,272,757, Light emitting diode lamp capable of high AC/DC voltage operation".{{cite web}}: CS1 maint: multiple names: authors list (link)
  17. ^ Fan, Zhaoyang; Li, Jing; Lin, Jingyu; Jiang, Hongxing. "US patent 7,714,348, AC/DC light emitting diodes with integrated protection mechanism".{{cite web}}: CS1 maint: multiple names: authors list (link)
  18. ^ "DRAPA's SUVOS program". June 2002.
  19. ^ "DARPA's CMUVT Program".
  20. ^ "DARPA's DUVAP program" (PDF).
  21. ^ "DARPA's VIGIL program".
  22. ^ Dahal, R.; Pantha, B.; Li, J.; Lin, J. Y.; Jiang, H. X. (2009-02-09). "InGaN/GaN multiple quantum well solar cells with long operating wavelengths". Applied Physics Letters. 94 (6). doi:10.1063/1.3081123. hdl:2346/22892. ISSN 0003-6951.
  23. ^ Pantha, B. N.; Dahal, R.; Li, J.; Lin, J. Y.; Jiang, H. X.; Pomrenke, G. (2008-01-28). "Thermoelectric properties of InxGa1−xN alloys". Applied Physics Letters. 92 (4). doi:10.1063/1.2839309. hdl:2346/22904. ISSN 0003-6951.
  24. ^ Aryal, K.; Pantha, B. N.; Li, J.; Lin, J. Y.; Jiang, H. X. (2010-02-01). "Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells". Applied Physics Letters. 96 (5). doi:10.1063/1.3304786. hdl:2346/22876. ISSN 0003-6951.
  25. ^ Li, J.; Nam, K. B.; Nakarmi, M. L.; Lin, J. Y.; Jiang, H. X. (2002-10-28). "Band-edge photoluminescence of AlN epilayers". Applied Physics Letters. 81 (18): 3365–3367. doi:10.1063/1.1518558. ISSN 0003-6951.
  26. ^ Nam, K. B.; Li, J.; Nakarmi, M. L.; Lin, J. Y.; Jiang, H. X. (2004-06-21). "Unique optical properties of AlGaN alloys and related ultraviolet emitters". Applied Physics Letters. 84 (25): 5264–5266. doi:10.1063/1.1765208. hdl:2346/22952. ISSN 0003-6951.
  27. ^ Li, J.; Nam, K. B.; Nakarmi, M. L.; Lin, J. Y.; Jiang, H. X.; Carrier, Pierre; Wei, Su-Huai (2003-12-22). "Band structure and fundamental optical transitions in wurtzite AlN". Applied Physics Letters. 83 (25): 5163–5165. doi:10.1063/1.1633965. ISSN 0003-6951.
  28. ^ Oder, T. N.; Shakya, J.; Lin, J. Y.; Jiang, H. X. (2003-08-11). "III-nitride photonic crystals". Applied Physics Letters. 83 (6): 1231–1233. doi:10.1063/1.1600839. ISSN 0003-6951.
  29. ^ Oder, T. N.; Kim, K. H.; Lin, J. Y.; Jiang, H. X. (2004-01-26). "III-nitride blue and ultraviolet photonic crystal light emitting diodes". Applied Physics Letters. 84 (4): 466–468. doi:10.1063/1.1644050. hdl:2346/22956. ISSN 0003-6951.
  30. ^ Dahal, R.; Al Tahtamouni, T. M.; Fan, Z. Y.; Lin, J. Y.; Jiang, H. X. (2007-06-25). "Hybrid AlN–SiC deep ultraviolet Schottky barrier photodetectors". Applied Physics Letters. 90 (26). doi:10.1063/1.2752126. hdl:2346/22912. ISSN 0003-6951.
  31. ^ Nam, K. B.; Nakarmi, M. L.; Li, J.; Lin, J. Y.; Jiang, H. X. (2003-08-04). "Mg acceptor level in AlN probed by deep ultraviolet photoluminescence". Applied Physics Letters. 83 (5): 878–880. doi:10.1063/1.1594833. ISSN 0003-6951.
  32. ^ Nakarmi, M. L.; Nepal, N.; Ugolini, C.; Altahtamouni, T. M.; Lin, J. Y.; Jiang, H. X. (2006-10-09). "Correlation between optical and electrical properties of Mg-doped AlN epilayers". Applied Physics Letters. 89 (15). doi:10.1063/1.2362582. hdl:2346/22919. ISSN 0003-6951.
  33. ^ Zhu, K.; Nakarmi, M. L.; Kim, K. H.; Lin, J. Y.; Jiang, H. X. (2004-11-15). "Silicon doping dependence of highly conductive n-type Al0.7Ga0.3N". Applied Physics Letters. 85 (20): 4669–4671. doi:10.1063/1.1825055. hdl:2346/22943. ISSN 0003-6951.
  34. ^ Nakarmi, M. L.; Kim, K. H.; Zhu, K.; Lin, J. Y.; Jiang, H. X. (2004-10-25). "Transport properties of highly conductive n-type Al-rich AlxGa1−xN(x⩾0.7)". Applied Physics Letters. 85 (17): 3769–3771. doi:10.1063/1.1809272. hdl:2346/22947. ISSN 0003-6951.
  35. ^ Nakarmi, M. L.; Kim, K. H.; Khizar, M.; Fan, Z. Y.; Lin, J. Y.; Jiang, H. X. (2005-02-25). "Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys". Applied Physics Letters. 86 (9). doi:10.1063/1.1879098. ISSN 0003-6951.
  36. ^ Jiang, Hongxing. "Google Scholar citation".
  37. ^ Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X. (2017-07-17). "Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors". Applied Physics Letters. 111 (3): 033507. Bibcode:2017ApPhL.111c3507M. doi:10.1063/1.4995399. ISSN 0003-6951. OSTI 1416871.
  38. ^ Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X. (2018-01-28). "Hexagonal boron nitride neutron detectors with high detection efficiencies". Journal of Applied Physics. 123 (4): 044501. Bibcode:2018JAP...123d4501M. doi:10.1063/1.5017979. ISSN 0021-8979. OSTI 1418973.
  39. ^ Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X. (2020-04-06). "High efficiency hexagonal boron nitride neutron detectors with 1 cm2 detection areas". Applied Physics Letters. 116 (14): 142102. Bibcode:2020ApPhL.116n2102M. doi:10.1063/1.5143808. ISSN 0003-6951. OSTI 1799127. S2CID 215735172.
  40. ^ Alemoush, Z.; Tingsuwatit, A.; Maity, A.; Li, J.; Lin, J. Y.; Jiang, H. X. (2024-05-07). "Status of h-BN quasi-bulk crystals and high efficiency neutron detectors". Journal of Applied Physics. 135 (17). doi:10.1063/5.0179610. hdl:2346/98586. ISSN 0021-8979.
  41. ^ Jiang, H. X.; Lin, J. Y. (1985-07-01). "Precession of Kepler's orbit". American Journal of Physics. 53 (7): 694–695. Bibcode:1985AmJPh..53..694J. doi:10.1119/1.14287. ISSN 0002-9505.
  42. ^ Eckart, Andreas (2005). The black hole at the center of the Milky Way. Rainer Schödel, Christian Michael Straubmeier. London: Imperial College Press. ISBN 1-86094-739-5. OCLC 568009152.
  43. ^ T. Harada, T. Igata, H. Saida, and Y. Takamori, "General formulae for the periapsis shift of a quasi-circular orbit in static spherically symmetric spacetimes and the active gravitational mass density," International Journal of Modern Physics D 32, 2350098 (2023). https://doi.org/10.1142/S0218271823500980https://arxiv.org/abs/2210.07516