Hox genes in amphibians and reptiles

A captive axolotl (Ambystoma mexicanum)

Hox genes play a massive role in some amphibians and reptiles in their ability to regenerate lost limbs, especially HoxA and HoxD genes.[1]

If the processes involved in forming new tissue can be reverse-engineered into humans, it may be possible to heal injuries of the spinal cord or brain, repair damaged organs and reduce scarring and fibrosis after surgery.[2][3] Despite the large conservation of the Hox genes through evolution, mammals and humans specifically cannot regenerate any of their limbs. This raises a question as to why humans which also possess an analog to these genes cannot regrow and regenerate limbs. Beside the lack of specific growth factor, studies have shown that something as small as base pair differences between amphibian and human Hox analogs play a crucial role in human inability to reproduce limbs.[4] Undifferentiated stem cells and the ability to have polarity in tissues is vital to this process.

  1. ^ Mullen, L.M.; Bryant, S.V.; Torok, M.A.; Blumberg, B.; Gardiner, D.M. (November 1996). "Nerve dependency of regeneration: the role of Distal-less and FGF signaling in amphibian limb regeneration". Development. 122 (11): 3487–3497. doi:10.1242/dev.122.11.3487. PMID 8951064.
  2. ^ "Do salamanders' immune systems hold the key to regeneration?". Science Daily. Retrieved 2013-05-21.
  3. ^ Godwin, James W.; Pinto, Alexander R.; Rosenthal, Nadia (April 24, 2013). "Macrophages are required for adult salamander limb regeneration". Proceedings of the National Academy of Sciences of the United States of America. 110 (23): 9415–9420. Bibcode:2013PNAS..110.9415G. doi:10.1073/pnas.1300290110. PMC 3677454. PMID 23690624.
  4. ^ Savard, P.; Gates, P.B.; Brockes, J.P. (1988). "Position dependent expression of a homeobox gene transcript in relation to amphibian limb regeneration". The EMBO Journal. 7 (13): 4275–4282. doi:10.1002/j.1460-2075.1988.tb03325.x. PMC 455141. PMID 2907476.