Hybrid system

A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior – a system that can both flow (described by a differential equation) and jump (described by a state machine, automaton, or a difference equation).[1] Often, the term "hybrid dynamical system" is used instead of "hybrid system", to distinguish from other usages of "hybrid system", such as the combination neural nets and fuzzy logic, or of electrical and mechanical drivelines. A hybrid system has the benefit of encompassing a larger class of systems within its structure, allowing for more flexibility in modeling dynamic phenomena.

In general, the state of a hybrid system is defined by the values of the continuous variables and a discrete mode. The state changes either continuously, according to a flow condition, or discretely according to a control graph. Continuous flow is permitted as long as so-called invariants hold, while discrete transitions can occur as soon as given jump conditions are satisfied. Discrete transitions may be associated with events.

  1. ^ Branicky, Michael S. (2005), Hristu-Varsakelis, Dimitrios; Levine, William S. (eds.), "Introduction to Hybrid Systems", Handbook of Networked and Embedded Control Systems, Boston, MA: Birkhäuser, pp. 91–116, doi:10.1007/0-8176-4404-0_5, ISBN 978-0-8176-4404-8, retrieved 2022-06-08