Hydroformylation | |
---|---|
Reaction type | Addition reaction |
Identifiers | |
RSC ontology ID | RXNO:0000272 |
In organic chemistry, hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes (R−CH=O) from alkenes (R2C=CR2).[1][2] This chemical reaction entails the net addition of a formyl group (−CHO) and a hydrogen atom to a carbon-carbon double bond. This process has undergone continuous growth since its invention: production capacity reached 6.6×106 tons in 1995. It is important because aldehydes are easily converted into many secondary products. For example, the resultant aldehydes are hydrogenated to alcohols that are converted to detergents. Hydroformylation is also used in speciality chemicals, relevant to the organic synthesis of fragrances and pharmaceuticals. The development of hydroformylation is one of the premier achievements of 20th-century industrial chemistry.
The process entails treatment of an alkene typically with high pressures (between 10 and 100 atmospheres) of carbon monoxide and hydrogen at temperatures between 40 and 200 °C.[3] In one variation, formaldehyde is used in place of synthesis gas.[4] Transition metal catalysts are required. Invariably, the catalyst dissolves in the reaction medium, i.e. hydroformylation is an example of homogeneous catalysis.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)
{{cite journal}}
: CS1 maint: multiple names: authors list (link)