Working principle | Semiconductor |
---|---|
Invented | 1959 |
Electronic symbol | |
IGBT schematic symbol |
An insulated-gate bipolar transistor (IGBT) is a three-terminal power semiconductor device primarily forming an electronic switch. It was developed to combine high efficiency with fast switching. It consists of four alternating layers (NPNP)[1][2][3][4][5] that are controlled by a metal–oxide–semiconductor (MOS) gate structure.
Although the structure of the IGBT is topologically similar to a thyristor with a "MOS" gate (MOS-gate thyristor), the thyristor action is completely suppressed, and only the transistor action is permitted in the entire device operation range. It is used in switching power supplies in high-power applications: variable-frequency drives (VFDs) for motor control in electric cars, trains, variable-speed refrigerators, and air conditioners, as well as lamp ballasts, arc-welding machines, photovoltaic and hybrid inverters, uninterruptible power supply systems (UPS), and induction stoves.
Since it is designed to turn on and off rapidly, the IGBT can synthesize complex waveforms with pulse-width modulation and low-pass filters, thus it is also used in switching amplifiers in sound systems and industrial control systems. In switching applications modern devices feature pulse repetition rates well into the ultrasonic-range frequencies, which are at least ten times higher than audio frequencies handled by the device when used as an analog audio amplifier. As of 2010[update], the IGBT was the second most widely used power transistor, after the power MOSFET.[citation needed]
Device characteristic | Power BJT | Power MOSFET | IGBT |
---|---|---|---|
Voltage rating | High <1 kV | High <1 kV | Very high >1 kV |
Current rating | High <500 A | Low <200 A | High >500 A |
Input drive | Current ratio hFE ~ 20–200 |
Voltage VGS ~ 3–10 V |
Voltage VGE ~ 4–8 V |
Input impedance | Low | High | High |
Output impedance | Low | Medium | Low |
Switching speed | Slow (μs) | Fast (ns) | Medium |
Cost | Low | Medium | High |
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link)