Interval order

The Hasse diagram for a partial order alongside an interval representation of the order.
A partial order on the set {a, b, c, d, e, f} illustrated by its Hasse diagram (left) and a collection of intervals that represents it (right).
The poset (black Hasse diagram) cannot be part of an interval order: if a is completely right of b, and d overlaps with both a and b, and c is completely right of d, then c must be completely right of b (light gray edge).

In mathematics, especially order theory, the interval order for a collection of intervals on the real line is the partial order corresponding to their left-to-right precedence relation—one interval, I1, being considered less than another, I2, if I1 is completely to the left of I2. More formally, a countable poset is an interval order if and only if there exists a bijection from to a set of real intervals, so , such that for any we have in exactly when .

Such posets may be equivalently characterized as those with no induced subposet isomorphic to the pair of two-element chains, in other words as the -free posets .[1] Fully written out, this means that for any two pairs of elements and one must have or .

The subclass of interval orders obtained by restricting the intervals to those of unit length, so they all have the form , is precisely the semiorders.

The complement of the comparability graph of an interval order (, ≤) is the interval graph .

Interval orders should not be confused with the interval-containment orders, which are the inclusion orders on intervals on the real line (equivalently, the orders of dimension ≤ 2).