Irrational rotation

Sturmian sequence generated by irrational rotation with theta=0.2882748715208621 and x=0.078943143

In the mathematical theory of dynamical systems, an irrational rotation is a map

where θ is an irrational number. Under the identification of a circle with R/Z, or with the interval [0, 1] with the boundary points glued together, this map becomes a rotation of a circle by a proportion θ of a full revolution (i.e., an angle of 2πθ radians). Since θ is irrational, the rotation has infinite order in the circle group and the map Tθ has no periodic orbits.

Alternatively, we can use multiplicative notation for an irrational rotation by introducing the map

The relationship between the additive and multiplicative notations is the group isomorphism

.

It can be shown that φ is an isometry.

There is a strong distinction in circle rotations that depends on whether θ is rational or irrational. Rational rotations are less interesting examples of dynamical systems because if and , then when . It can also be shown that when .