Kahn process networks

A Kahn process network (KPN, or process network) is a distributed model of computation in which a group of deterministic sequential processes communicate through unbounded first in, first out channels. The model requires that reading from a channel is blocking while writing is non-blocking. Due to these key restrictions, the resulting process network exhibits deterministic behavior that does not depend on the timing of computation nor on communication delays.

Kahn process networks were originally developed for modeling parallel programs, but have proven convenient for modeling embedded systems, high-performance computing systems, signal processing systems, stream processing systems, dataflow programming languages, and other computational tasks. KPNs were introduced by Gilles Kahn in 1974.[1]

A Kahn process network with three processes (vertices) and three communication channels (edges). During its execution, the process P reads from channels A and B and writes to channel C.
  1. ^ Kahn, G. (1974). Rosenfeld, Jack L. (ed.). The semantics of a simple language for parallel programming (PDF). Proc. IFIP Congress on Information Processing. North-Holland. ISBN 0-7204-2803-3.