Kontsevich quantization formula

In mathematics, the Kontsevich quantization formula describes how to construct a generalized ★-product operator algebra from a given arbitrary finite-dimensional Poisson manifold. This operator algebra amounts to the deformation quantization of the corresponding Poisson algebra. It is due to Maxim Kontsevich.[1][2]

  1. ^ M. Kontsevich (2003), Deformation Quantization of Poisson Manifolds, Letters of Mathematical Physics 66, pp. 157–216.
  2. ^ Cattaneo, Alberto; Felder, Giovanni (2000). "A Path Integral Approach to the Kontsevich Quantization Formula". Communications in Mathematical Physics. 212 (3): 591–611. arXiv:math/9902090. Bibcode:2000CMaPh.212..591C. doi:10.1007/s002200000229. S2CID 8510811.