In the study of electoral systems, the uncovered set (also called the Landau set or the Fishburn set) is a set of candidates that generalizes the notion of a Condorcet winner whenever there is a Condorcet paradox.[1] The Landau set can be thought of as the Pareto frontier for a set of candidates, when the frontier is determined by pairwise victories.[2]
The Landau set is a nonempty subset of the Smith set. It was first discovered by Nicholas Miller.[2]