Type of artificial neural network
A large language model (LLM) is a type of computational model designed for natural language processing tasks such as language generation. As language models, LLMs acquire these abilities by learning statistical relationships from vast amounts of text during a self-supervised and semi-supervised training process.[1]
The largest and most capable LLMs are artificial neural networks built with a decoder-only transformer-based architecture, enabling efficient processing and generation of large-scale text data. Modern models can be fine-tuned for specific tasks, or be guided by prompt engineering.[2] These models acquire predictive power regarding syntax, semantics, and ontologies[3] inherent in human language corpora, but they also inherit inaccuracies and biases present in the data on which they are trained.[4]
- ^ "Better Language Models and Their Implications". OpenAI. 2019-02-14. Archived from the original on 2020-12-19. Retrieved 2019-08-25.
- ^ Brown, Tom B.; Mann, Benjamin; Ryder, Nick; Subbiah, Melanie; Kaplan, Jared; Dhariwal, Prafulla; Neelakantan, Arvind; Shyam, Pranav; Sastry, Girish; Askell, Amanda; Agarwal, Sandhini; Herbert-Voss, Ariel; Krueger, Gretchen; Henighan, Tom; Child, Rewon; Ramesh, Aditya; Ziegler, Daniel M.; Wu, Jeffrey; Winter, Clemens; Hesse, Christopher; Chen, Mark; Sigler, Eric; Litwin, Mateusz; Gray, Scott; Chess, Benjamin; Clark, Jack; Berner, Christopher; McCandlish, Sam; Radford, Alec; Sutskever, Ilya; Amodei, Dario (Dec 2020). Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.F.; Lin, H. (eds.). "Language Models are Few-Shot Learners" (PDF). Advances in Neural Information Processing Systems. 33. Curran Associates, Inc.: 1877–1901. Archived (PDF) from the original on 2023-11-17. Retrieved 2023-03-14.
- ^ Fathallah, Nadeen; Das, Arunav; De Giorgis, Stefano; Poltronieri, Andrea; Haase, Peter; Kovriguina, Liubov (2024-05-26). NeOn-GPT: A Large Language Model-Powered Pipeline for Ontology Learning (PDF). Extended Semantic Web Conference 2024. Hersonissos, Greece.
- ^ Manning, Christopher D. (2022). "Human Language Understanding & Reasoning". Daedalus. 151 (2): 127–138. doi:10.1162/daed_a_01905. S2CID 248377870. Archived from the original on 2023-11-17. Retrieved 2023-03-09.