Lehmer's conjecture

Lehmer's conjecture, also known as the Lehmer's Mahler measure problem, is a problem in number theory raised by Derrick Henry Lehmer.[1] The conjecture asserts that there is an absolute constant such that every polynomial with integer coefficients satisfies one of the following properties:

  • The Mahler measure[2] of is greater than or equal to .
  • is an integral multiple of a product of cyclotomic polynomials or the monomial , in which case . (Equivalently, every complex root of is a root of unity or zero.)

There are a number of definitions of the Mahler measure, one of which is to factor over as

and then set

The smallest known Mahler measure (greater than 1) is for "Lehmer's polynomial"

for which the Mahler measure is the Salem number[3]

It is widely believed that this example represents the true minimal value: that is, in Lehmer's conjecture.[4][5]

  1. ^ Lehmer, D.H. (1933). "Factorization of certain cyclotomic functions". Ann. Math. 2. 34 (3): 461–479. doi:10.2307/1968172. hdl:10338.dmlcz/128119. ISSN 0003-486X. JSTOR 1968172. Zbl 0007.19904.
  2. ^ Smyth, Chris (2008). "The Mahler measure of algebraic numbers: a survey". In McKee, James; Smyth, Chris (eds.). Number Theory and Polynomials. Cambridge University Press. pp. 322–349. ISBN 978-0-521-71467-9.
  3. ^ Borwein, Peter (2002). Computational Excursions in Analysis and Number Theory. CMS Books in Mathematics. Springer-Verlag. p. 16. ISBN 0-387-95444-9. Zbl 1020.12001.
  4. ^ Smyth (2008) p.324
  5. ^ Everest, Graham; van der Poorten, Alf; Shparlinski, Igor; Ward, Thomas (2003). Recurrence sequences. Mathematical Surveys and Monographs. Vol. 104. Providence, RI: American Mathematical Society. p. 30. ISBN 0-8218-3387-1. Zbl 1033.11006.