In graph theory , a branch of mathematics , a linear forest is a kind of forest where each component is a path graph ,[ 1] : 200 or a disjoint union of nontrivial paths.[ 2] : 246 Equivalently, it is an acyclic and claw-free graph .[ 3] : 130, 131 An acyclic graph where every vertex has degree 0, 1, or 2 is a linear forest.[ 4] : 310 [ 5] : 107 An undirected graph has Colin de Verdière graph invariant at most 1 if and only if it is a (node-)disjoint union of paths, i.e. it is linear.[ 6] : 13, 19–21 [ 7] : 29, 35, 67 (3, 6, 29) Any linear forest is a subgraph of the path graph with the same number of vertices.[ 8] : 55
^ Harary, Frank (September 1970). "Covering and Packing in Graphs, I". Annals of the New York Academy of Sciences . 175 (1): 198–205. Bibcode :1970NYASA.175..198H . doi :10.1111/j.1749-6632.1970.tb56470.x .
^ Burr, Stefan A. ; Roberts, John A. (May 1974). "On Ramsey numbers for linear forests". Discrete Mathematics . 8 (3). North-Holland Publishing Company: 245–250. doi :10.1016/0012-365x(74)90136-8 . MR 0335325 .
^ Brandstädt, Andreas ; Giakoumakis, Vassilis; Milanič, Martin (2018-12-11). "Weighted efficient domination for some classes of H-free and of (H1,H2)-free graphs" . Discrete Applied Mathematics . 250 . Elsevier B.V.: 130–144. doi :10.1016/j.dam.2018.05.012 . MR 3868662 . EBSCOhost 45704539 , 132688071 .
^ Enomoto, Hikoe; Péroche, Bernard (Summer 1984). "The Linear Arboricity of Some Regular Graphs". Journal of Graph Theory . 8 (2): 309–324. doi :10.1002/jgt.3190080211 .
^ Jain, Sparsh; Pallathumadam, Sreejith K.; Rajendraprasad, Deepak (February 10–12, 2022). "B0 -VPG Representation of AT-free Outerplanar Graphs" . Written at Puducherry, India. In Balachandran, Niranjan; Inkulu, R. (eds.). Algorithms and Discrete Applied Mathematics: 8th International Conference, CALDAM 2022 . Lecture Notes in Computer Science . Vol. 13179. Cham, Switzerland: Springer Nature. pp. 103–114. doi :10.1007/978-3-030-95018-7_9 . ISBN 978-3-030-95017-0 .
^ de Verdière, Yves Colin (October 1990). "Sur un Nouvel Invariant des Graphes et un Critère de Planarité". Journal of Combinatorial Theory, Series B (in French). 50 (1). Academic Press, Inc.: 11–21. doi :10.1016/0095-8956(90)90093-F .
^ van der Holst, Hein; Lovász, László ; Schrijver, Alexander (1999) [Preliminary version, March 1997]. "The Colin de Verdière graph parameter" . In Lovász, László; Gyárfás, András; Katona, Gyula; Recski, András; Székely, László (eds.). Graph Theory and Combinatorial Biology . Bolyai Society Mathematical Studies. Vol. 7. Budapest, Hungary : János Bolyai Mathematical Society (Hungarian : Bolyai János Matematikai Társulat ). pp. 29–85 [1–43]. ISBN 963-8022-90-6 . MR 1673503 . Archived from the original on 2007-02-06. Associated with the "International Colloquium on Combinatorics and Graph Theory" in Balatonlelle on July 1996 (see p. 5 and http://wwwold.sztaki.hu/library/publtop/gyarf.jhtml ). CS1 maint: postscript (link )
^ Clark, Curtis (1984). An Approach to Graph Achievement Games: Ultimately Economical Graphs (PhD thesis). Ann Arbor, Michigan: University of Michigan. ISBN 979-8-204-34535-5 . ProQuest 303324911 (UMI 8502782) – via ProQuest Dissertations & Theses Global.