Liouville number

In number theory, a Liouville number is a real number with the property that, for every positive integer , there exists a pair of integers with such that

The inequality implies that Liouville numbers possess an excellent sequence of rational number approximations. In 1844, Joseph Liouville proved a bound showing that there is a limit to how well algebraic numbers can be approximated by rational numbers, and he defined Liouville numbers specifically so that they would have rational approximations better than the ones allowed by this bound. Liouville also exhibited examples of Liouville numbers[1] thereby establishing the existence of transcendental numbers for the first time.[2] One of these examples is Liouville's constant

in which the nth digit after the decimal point is 1 if is the factorial of a positive integer and 0 otherwise. It is known that π and e, although transcendental, are not Liouville numbers.[3]

  1. ^ Joseph Liouville (May 1844). "Mémoires et communications". Comptes rendus de l'Académie des Sciences (in French). 18 (20, 21): 883–885, 910–911.
  2. ^ Baker, Alan (1990). Transcendental Number Theory (paperback ed.). Cambridge University Press. p. 1. ISBN 978-0-521-39791-9.
  3. ^ Baker 1990, p. 86.