Lipidomics

Examples of various lipid species.

Lipidomics is the large-scale study of pathways and networks of cellular lipids in biological systems.[1][2][3] The word "lipidome" is used to describe the complete lipid profile within a cell, tissue, organism, or ecosystem and is a subset of the "metabolome" which also includes other major classes of biological molecules (such as amino acids, sugars, glycolysis & TCA intermediates, and nucleic acids). Lipidomics is a relatively recent research field that has been driven by rapid advances in technologies such as mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy, dual polarisation interferometry and computational methods, coupled with the recognition of the role of lipids in many metabolic diseases such as obesity, atherosclerosis, stroke, hypertension and diabetes. This rapidly expanding field[4] complements the huge progress made in genomics and proteomics, all of which constitute the family of systems biology.

Lipidomics research involves the identification and quantification of the thousands of cellular lipid molecular species and their interactions with other lipids, proteins, and other metabolites. Investigators in lipidomics examine the structures, functions, interactions, and dynamics of cellular lipids and the changes that occur during perturbation of the system.

Han and Gross[5] first defined the field of lipidomics through integrating the specific chemical properties inherent in lipid molecular species with a comprehensive mass spectrometric approach. Although lipidomics is under the umbrella of the more general field of "metabolomics", lipidomics is itself a distinct discipline due to the uniqueness and functional specificity of lipids relative to other metabolites.

In lipidomic research, a vast amount of information quantitatively describing the spatial and temporal alterations in the content and composition of different lipid molecular species is accrued after perturbation of a cell through changes in its physiological or pathological state. Information obtained from these studies facilitates mechanistic insights into changes in cellular function. Therefore, lipidomic studies play an essential role in defining the biochemical mechanisms of lipid-related disease processes through identifying alterations in cellular lipid metabolism, trafficking and homeostasis. The growing attention on lipid research is also seen from the initiatives underway of the LIPID Metabolites And Pathways Strategy (LIPID MAPS Consortium).[6] and The European Lipidomics Initiative (ELIfe).[7]

  1. ^ Wenk MR (July 2005). "The emerging field of lipidomics". Nat Rev Drug Discov. 4 (7): 594–610. doi:10.1038/nrd1776. PMID 16052242. S2CID 83931214.
  2. ^ Watson AD (October 2006). "Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems". J. Lipid Res. 47 (10): 2101–11. doi:10.1194/jlr.R600022-JLR200. PMID 16902246.
  3. ^ "Lipidomics". The Lipid Chronicles. 2011-12-15. Retrieved 2012-01-08.
  4. ^ Han X (2007). "Neurolipidomics: challenges and developments". Front. Biosci. 12: 2601–15. doi:10.2741/2258. PMC 2141543. PMID 17127266.
  5. ^ Han X, Gross RW; Gross (June 2003). "Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics". J. Lipid Res. 44 (6): 1071–9. doi:10.1194/jlr.R300004-JLR200. PMID 12671038.
  6. ^ LIPID MAPS Consortium
  7. ^ European Lipidomics Initiative