Local zeta function

In number theory, the local zeta function Z(Vs) (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as

where V is a non-singular n-dimensional projective algebraic variety over the field Fq with q elements and Nk is the number of points of V defined over the finite field extension Fqk of Fq.[1]

Making the variable transformation t = qs, gives

as the formal power series in the variable .

Equivalently, the local zeta function is sometimes defined as follows:

In other words, the local zeta function Z(Vt) with coefficients in the finite field Fq is defined as a function whose logarithmic derivative generates the number Nk of solutions of the equation defining V in the degree k extension Fqk.


  1. ^ Section V.2 of Silverman, Joseph H. (1992), The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, New York: Springer-Verlag, ISBN 978-0-387-96203-0, MR 1329092