Logic optimization

Logic optimization is a process of finding an equivalent representation of the specified logic circuit under one or more specified constraints. This process is a part of a logic synthesis applied in digital electronics and integrated circuit design.

Generally, the circuit is constrained to a minimum chip area meeting a predefined response delay. The goal of logic optimization of a given circuit is to obtain the smallest logic circuit that evaluates to the same values as the original one.[1] Usually, the smaller circuit with the same function is cheaper,[2] takes less space, consumes less power, has shorter latency, and minimizes risks of unexpected cross-talk, hazard of delayed signal processing, and other issues present at the nano-scale level of metallic structures on an integrated circuit.

In terms of Boolean algebra, the optimization of a complex Boolean expression is a process of finding a simpler one, which would upon evaluation ultimately produce the same results as the original one.

  1. ^ Cite error: The named reference Maxfield_2008 was invoked but never defined (see the help page).
  2. ^ Cite error: The named reference Balasanyan-Aghagulyan-Wuttke-Henke_2018 was invoked but never defined (see the help page).