The low-velocity zone (LVZ) occurs close to the boundary between the lithosphere and the asthenosphere in the upper mantle. It is characterized by unusually low seismic shear wave velocity compared to the surrounding depth intervals. This range of depths also corresponds to anomalously high electrical conductivity. It is present between about 80 and 300 km depth. This appears to be universally present for S waves, but may be absent in certain regions for P waves.[2] A second low-velocity zone (not generally referred to as the LVZ, but as ULVZ) has been detected in a thin ≈50 km layer at the core-mantle boundary.[3] These LVZs may have important implications for plate tectonics and the origin of the Earth's crust.[2][3][4]
The LVZ has been interpreted to indicate the presence of a significant degree of partial melting, and alternatively as a natural consequence of a thermal boundary layer and the effects of pressure and temperature on the elastic wave velocity of mantle components in the solid state.[2] In any event, a very limited amount of melt (about 1%) is needed to produce these effects. Water in this layer can lower the melting point, and may play an important part in its composition.[4][5]
{{cite book}}
: CS1 maint: multiple names: authors list (link)