Magnetic helicity

In plasma physics, magnetic helicity is a measure of the linkage, twist, and writhe of a magnetic field.[1][2]

Magnetic helicity is a useful concept in the analysis of systems with extremely low resistivity, such as astrophysical systems. When resistivity is low, magnetic helicity is conserved over longer timescales, to a good approximation. Magnetic helicity dynamics are particularly important in analyzing solar flares and coronal mass ejections.[3] Magnetic helicity is relevant in the dynamics of the solar wind.[4] Its conservation is significant in dynamo processes, and it also plays a role in fusion research, such as reversed field pinch experiments.[5][6][7][8][9]

When a magnetic field contains magnetic helicity, it tends to form large-scale structures from small-scale ones.[10] This process can be referred to as an inverse transfer in Fourier space. This property of increasing the scale of structures makes magnetic helicity special in three dimensions, as other three-dimensional flows in ordinary fluid mechanics are the opposite, being turbulent and having the tendency to "destroy" structure, in the sense that large-scale vortices break up into smaller ones, until dissipating through viscous effects into heat. Through a parallel but inverted process, the opposite happens for magnetic vortices, where small helical structures with non-zero magnetic helicity combine and form large-scale magnetic fields. This is visible in the dynamics of the heliospheric current sheet,[11] a large magnetic structure in the Solar System.

  1. ^ Cantarella, Jason; Deturck, Dennis; Gluck, Herman; Teytel, Mikhail (2013-03-19). "Influence of Geometry and Topology on Helicity". Magnetic Helicity in Space and Laboratory Plasmas. Washington, D. C.: American Geophysical Union. pp. 17–24. doi:10.1029/gm111p0017. ISBN 978-1-118-66447-6. Retrieved 2021-01-18.
  2. ^ Moffatt, H. K. (1969-01-16). "The degree of knottedness of tangled vortex lines". Journal of Fluid Mechanics. 35 (1): 117–129. Bibcode:1969JFM....35..117M. doi:10.1017/s0022112069000991. ISSN 0022-1120. S2CID 121478573.
  3. ^ Low, B. C. (1996). "Magnetohydrodynamic Processes in the Solar Corona: Flares, Coronal Mass Ejections and Magnetic Helicity". Solar and Astrophysical Magnetohydrodynamic Flows. Dordrecht: Springer Netherlands. pp. 133–149. doi:10.1007/978-94-009-0265-7_7. ISBN 978-94-010-6603-7. Retrieved 2020-10-08.
  4. ^ Bieber, J. W.; Evenson, P. A.; Matthaeus, W. H. (April 1987). "Magnetic helicity of the Parker field". The Astrophysical Journal. 315: 700. Bibcode:1987ApJ...315..700B. doi:10.1086/165171. ISSN 0004-637X.
  5. ^ Blackman, E.G. (2015). "Magnetic Helicity and Large Scale Magnetic Fields: A Primer". Space Science Reviews. 188 (1–4): 59–91. arXiv:1402.0933. Bibcode:2015SSRv..188...59B. doi:10.1007/s11214-014-0038-6. S2CID 17015601.
  6. ^ Brandenburg, A. (2009). "Hydromagnetic Dynamo Theory". Scholarpedia. 2 (3): 2309. Bibcode:2007SchpJ...2.2309B. doi:10.4249/scholarpedia.2309. rev #73469.
  7. ^ Brandenburg, A.; Lazarian, A. (2013-08-31). "Astrophysical Hydromagnetic Turbulence". Space Science Reviews. 178 (2–4): 163–200. arXiv:1307.5496. Bibcode:2013SSRv..178..163B. doi:10.1007/s11214-013-0009-3. ISSN 0038-6308. S2CID 16261037.
  8. ^ Vishniac, Ethan T.; Cho, Jungyeon (April 2001). "Magnetic Helicity Conservation and Astrophysical Dynamos". The Astrophysical Journal. 550 (2): 752–760. arXiv:astro-ph/0010373. Bibcode:2001ApJ...550..752V. doi:10.1086/319817. ISSN 0004-637X.
  9. ^ Escande, D. F.; Martin, P.; Ortolani, S.; Buffa, A.; Franz, P.; Marrelli, L.; Martines, E.; Spizzo, G.; Cappello, S.; Murari, A.; Pasqualotto, R. (2000-08-21). "Quasi-Single-Helicity Reversed-Field-Pinch Plasmas". Physical Review Letters. 85 (8): 1662–1665. Bibcode:2000PhRvL..85.1662E. doi:10.1103/physrevlett.85.1662. ISSN 0031-9007. PMID 10970583.
  10. ^ Frisch, U.; Pouquet, A.; LÉOrat, J.; Mazure, A. (1975-04-29). "Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence". Journal of Fluid Mechanics. 68 (4): 769–778. Bibcode:1975JFM....68..769F. doi:10.1017/s002211207500122x. ISSN 0022-1120. S2CID 45460069.
  11. ^ Berger, M.A. (1999). "Introduction to magnetic helicity". Plasma Physics and Controlled Fusion. 41 (12B): B167–B175. Bibcode:1999PPCF...41B.167B. doi:10.1088/0741-3335/41/12B/312. S2CID 250734282.