This article needs additional citations for verification. (May 2017) |
Magnetomyography (MMG) is a technique for mapping muscle activity by recording magnetic fields produced by electrical currents occurring naturally in the muscles, using arrays of SQUIDs (superconducting quantum interference devices).[1] It has a better capability than electromyography for detecting slow or direct currents. The magnitude of the MMG signal is in the scale of pico (10−12) to femto (10−15) Tesla (T). Miniaturizing MMG offers a prospect to modernize the bulky SQUID to wearable miniaturized magnetic sensors.[2]
Two key drivers for the development of the MMG method:[3] 1) poor spatial resolution of the EMG signals when recorded non-invasively on the skin where state-of-the-art EMG measurements are even using needle recording probes, which is possible to accurately assess muscle activity but painful and limited to tiny areas with poor spatial sampling points; 2) poor biocompatibility of the implantable EMG sensors due to the metal-tissue interface. The MMG sensors have the potential to address both shortcomings concurrently because: 1) the size of magnetic field reduces significantly with the distance between the origin and the sensor, thereby with MMG spatial resolution is uplifted; and 2) the MMG sensors do not need electrical contacts to record, hence if fully packaged with biocompatible materials or polymers, they can improve long-term biocompatibility.