Manin triple

In mathematics, a Manin triple consists of a Lie algebra with a non-degenerate invariant symmetric bilinear form, together with two isotropic subalgebras and such that is the direct sum of and as a vector space. A closely related concept is the (classical) Drinfeld double, which is an even dimensional Lie algebra which admits a Manin decomposition.

Manin triples were introduced by Vladimir Drinfeld in 1987, who named them after Yuri Manin.[1]

In 2001 Delorme [fr] classified Manin triples where is a complex reductive Lie algebra.[2]

  1. ^ Drinfeld, V. G. (1987). Gleason, Andrew (ed.). "Quantum groups" (PDF). Proceedings of the International Congress of Mathematicians 1986. 1. Berkeley: American Mathematical Society: 798–820. ISBN 978-0-8218-0110-9. MR 0934283.
  2. ^ Delorme, Patrick (2001-12-01). "Classification des triples de Manin pour les algèbres de Lie réductives complexes: Avec un appendice de Guillaume Macey". Journal of Algebra. 246 (1): 97–174. arXiv:math/0003123. doi:10.1006/jabr.2001.8887. ISSN 0021-8693. MR 1872615.