This article may be too technical for most readers to understand.(December 2021) |
A Markov partition in mathematics is a tool used in dynamical systems theory, allowing the methods of symbolic dynamics to be applied to the study of hyperbolic dynamics. By using a Markov partition, the system can be made to resemble a discrete-time Markov process, with the long-term dynamical characteristics of the system represented as a Markov shift. The appellation 'Markov' is appropriate because the resulting dynamics of the system obeys the Markov property. The Markov partition thus allows standard techniques from symbolic dynamics to be applied, including the computation of expectation values, correlations, topological entropy, topological zeta functions, Fredholm determinants and the like.