Maximal lotteries

Maximal lotteries refers to a probabilistic voting rule. The method uses preferential ballots and returns a probability distribution (or linear combination) of candidates that a majority of voters would weakly prefer to any other.[1]

Maximal lotteries satisfy a wide range of desirable properties: they elect the Condorcet winner with probability 1 if it exists[1] and never elect candidates outside the Smith set.[1] Moreover, they satisfy reinforcement,[2] participation,[3] and independence of clones.[2] The probabilistic voting rule that returns all maximal lotteries is the only rule satisfying reinforcement, Condorcet-consistency, and independence of clones.[2] The social welfare function that top-ranks maximal lotteries has been uniquely characterized using Arrow's independence of irrelevant alternatives and Pareto efficiency.[4]

Maximal lotteries do not satisfy the standard notion of strategyproofness, as Allan Gibbard has shown that only random dictatorships can satisfy strategyproofness and ex post efficiency.[5] Maximal lotteries are also nonmonotonic in probabilities, i.e. it is possible that the probability of an alternative decreases when a voter ranks this alternative up.[1] However, they satisfy relative monotonicity, i.e., the probability of relative to that of does not decrease when is improved over .[6]

The support of maximal lotteries, which is known as the essential set or the bipartisan set, has been studied in detail.[7][8][9][10]

  1. ^ a b c d P. C. Fishburn. Probabilistic social choice based on simple voting comparisons. Review of Economic Studies, 51(4):683–692, 1984.
  2. ^ a b c F. Brandl, F. Brandt, and H. G. Seedig. Consistent probabilistic social choice. Econometrica. 84(5), pages 1839-1880, 2016.
  3. ^ F. Brandl, F. Brandt, and J. Hofbauer. Welfare Maximization Entices Participation. Games and Economic Behavior. 14, pages 308-314, 2019.
  4. ^ F. Brandl and F. Brandt. Arrovian Aggregation of Convex Preferences. Econometrica. 88(2), pages 799-844, 2020.
  5. ^ Gibbard, Allan (1977). "Manipulation of Schemes that Mix Voting with Chance". Econometrica. 45 (3): 665–681. doi:10.2307/1911681. hdl:10419/220534. ISSN 0012-9682. JSTOR 1911681.
  6. ^ Brandl, Florian; Brandt, Felix; Stricker, Christian (2022-01-01). "An analytical and experimental comparison of maximal lottery schemes". Social Choice and Welfare. 58 (1): 5–38. doi:10.1007/s00355-021-01326-x. hdl:10419/286729. ISSN 1432-217X.
  7. ^ B. Dutta and J.-F. Laslier. Comparison functions and choice correspondences. Social Choice and Welfare, 16: 513–532, 1999.
  8. ^ G. Laffond, J.-F. Laslier, and M. Le Breton. The bipartisan set of a tournament game. Games and Economic Behavior, 5(1):182–201, 1993.
  9. ^ Laslier, J.-F. Tournament solutions and majority voting Springer-Verlag, 1997.
  10. ^ F. Brandt, M. Brill, H. G. Seedig, and W. Suksompong. On the structure of stable tournament solutions. Economic Theory, 65(2):483–507, 2018.