Mechanosensitive channels

Mechanosensitive channels (MSCs), mechanosensitive ion channels or stretch-gated ion channels are membrane proteins capable of responding to mechanical stress over a wide dynamic range of external mechanical stimuli.[1][2][3][4] They are present in the membranes of organisms from the three domains of life: bacteria, archaea, and eukarya.[5] They are the sensors for a number of systems including the senses of touch, hearing and balance, as well as participating in cardiovascular regulation and osmotic homeostasis (e.g. thirst). The channels vary in selectivity for the permeating ions from nonselective between anions and cations in bacteria, to cation selective allowing passage Ca2+, K+ and Na+ in eukaryotes, and highly selective K+ channels in bacteria and eukaryotes.

All organisms, and apparently all cell types, sense and respond to mechanical stimuli.[6] MSCs function as mechanotransducers capable of generating both electrical and ion flux signals as a response to external or internal[7] stimuli.[8] Under extreme turgor in bacteria, non selective MSCs such as MSCL and MSCS serve as safety valves to prevent lysis. In specialized cells of the higher organisms, other types of MSCs are probably the basis of the senses of hearing and touch and sense the stress needed for muscular coordination. However, none of these channels have been cloned. MSCs also allow plants to distinguish up from down by sensing the force of gravity. MSCs are not pressure-sensitive, but sensitive to local stress, most likely tension in the surrounding lipid bilayer.[9]

  1. ^ Sukharev, S.; Sachs, F. (2012). "Molecular Force Transduction by Ion Channels: diversity and unifying principles". J. Cell Sci. 125 (13): 1–9. doi:10.1242/jcs.092353. PMC 3434843. PMID 22797911.
  2. ^ Gottlieb, P.; Sachs, F (2012). "The sensation of stretch". Nature. 483 (7388): 163–164. Bibcode:2012Natur.483..163G. doi:10.1038/483163a. PMC 4090763. PMID 22398551.
  3. ^ Sachs, F. (2010). "Stretch activated Ion Channels; What are They". Physiology. 25 (1): 50–56. doi:10.1152/physiol.00042.2009. PMC 2924431. PMID 20134028.
  4. ^ Bowman, Charles L.; Gottlieb, P. A.; Suchyna, T. M.; Murphy, Y. K.; Sachs, F. (2007). "Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: History, properties, mechanisms and pharmacology". Toxicon. 49 (2): 249–270. Bibcode:2007Txcn...49..249B. doi:10.1016/j.toxicon.2006.09.030. PMC 1852511. PMID 17157345.
  5. ^ Pivetti CD, Yen MR, Miller S, Busch W, Tseng YH, Booth IR, Saier MH (March 2003). "Two families of mechanosensitive channel proteins". Microbiol. Mol. Biol. Rev. 67 (1): 66–85, table of contents. doi:10.1128/MMBR.67.1.66-85.2003. PMC 150521. PMID 12626684.
  6. ^ Kung, C. (2005). "A possible unifying principle for mechanosensation". Nature. 436 (7051): 647–54. Bibcode:2005Natur.436..647K. doi:10.1038/nature03896. PMID 16079835. S2CID 4374012.
  7. ^ Suchyna, T.; Sachs, F. (2007). "Mechanical and electrical properties of membranes from dystrophic and normal mouse muscle". J. Physiol. 581 (Pt 1): 369–387. doi:10.1113/jphysiol.2006.125021. PMC 2075208. PMID 17255168.
  8. ^ Hackney, CM; Furness, DN (1995). "Mechanotransduction in vertebrate hair cells: structure and function of the stereociliary bundle". Am J Physiol. 268 (1 Pt 1): C1–138. doi:10.1152/ajpcell.1995.268.1.C1. PMID 7840137.
  9. ^ Markin, V. S.; Sachs, F. (2004). "Thermodynamics of mechanosensitivity". Physical Biology. 1 (2): 110–124. Bibcode:2004PhBio...1..110M. doi:10.1088/1478-3967/1/2/007. PMID 16204828. S2CID 24625029.