Membrane gas separation

Gas mixtures can be effectively separated by synthetic membranes made from polymers such as polyamide or cellulose acetate, or from ceramic materials.[1]

Membrane cartridge

While polymeric membranes are economical and technologically useful, they are bounded by their performance, known as the Robeson limit (permeability must be sacrificed for selectivity and vice versa).[2] This limit affects polymeric membrane use for CO2 separation from flue gas streams, since mass transport becomes limiting and CO2 separation becomes very expensive due to low permeabilities. Membrane materials have expanded into the realm of silica, zeolites, metal-organic frameworks, and perovskites due to their strong thermal and chemical resistance as well as high tunability (ability to be modified and functionalized), leading to increased permeability and selectivity. Membranes can be used for separating gas mixtures where they act as a permeable barrier through which different compounds move across at different rates or not move at all. The membranes can be nanoporous, polymer, etc. and the gas molecules penetrate according to their size, diffusivity, or solubility.

  1. ^ Cite error: The named reference handbook was invoked but never defined (see the help page).
  2. ^ Jang, Kwang-Suk; Kim, Hyung-Ju; Johnson, J. R.; Kim, Wun-gwi; Koros, William J.; Jones, Christopher W.; Nair, Sankar (2011-06-28). "Modified Mesoporous Silica Gas Separation Membranes on Polymeric Hollow Fibers". Chemistry of Materials. 23 (12): 3025–3028. doi:10.1021/cm200939d. ISSN 0897-4756.