Microcrystal electron diffraction

Microcrystal electron diffraction, or MicroED,[1][2] is a CryoEM method that was developed by the Gonen laboratory in late 2013 at the Janelia Research Campus of the Howard Hughes Medical Institute. MicroED is a form of electron crystallography where thin 3D crystals are used for structure determination by electron diffraction. Prior to this demonstration, macromolecular (protein) electron crystallography was mainly used on 2D crystals, for example.[3][4] The method is one of several modern versions of approaches to determine atomic structures using electron diffraction first demonstrated for the positions of hydrogen atoms in NH4Cl crystals by W. E. Laschkarew and I. D. Usykin in 1933,[5] which has since been used for surfaces,[6] via precession electron diffraction,[7] with much of the early work described in the work of Boris Vainshtein[8] and Douglas L. Dorset.[9]

The method was developed for structure determination of proteins from nanocrystals that are typically not suitable for X-ray diffraction because of their size.[10] Crystals that are one billionth the size needed for X-ray crystallography can yield high quality data.[11] The samples are frozen hydrated as for all other CryoEM modalities but instead of using the transmission electron microscope (TEM) in imaging mode one uses it in diffraction mode with a low electron exposure (typically < 0.01 e2/s). The nano crystal is exposed to the diffracting beam and continuously rotated[2] while diffraction is collected on a fast camera as a movie.[2] MicroED data is then processed using software for X-ray crystallography for structure analysis and refinement.[12] The hardware and software used in a MicroED experiment are standard and broadly available.[13][14]

  1. ^ Shi, Dan; Nannenga, Brent L; Iadanza, Matthew G; Gonen, Tamir (2013-11-19). "Three-dimensional electron crystallography of protein microcrystals". eLife. 2: e01345. doi:10.7554/elife.01345. ISSN 2050-084X. PMC 3831942. PMID 24252878.
  2. ^ a b c Nannenga, Brent L; Shi, Dan; Leslie, Andrew G W; Gonen, Tamir (2014-08-03). "High-resolution structure determination by continuous-rotation data collection in MicroED". Nature Methods. 11 (9): 927–930. doi:10.1038/nmeth.3043. ISSN 1548-7091. PMC 4149488. PMID 25086503.
  3. ^ Gonen, Tamir; Sliz, Piotr; Kistler, Joerg; Cheng, Yifan; Walz, Thomas (May 2004). "Aquaporin-0 membrane junctions reveal the structure of a closed water pore". Nature. 429 (6988): 193–197. doi:10.1038/nature02503. ISSN 1476-4687.
  4. ^ Walz, Thomas; Hirai, Teruhisa; Murata, Kazuyoshi; Heymann, J. Bernard; Mitsuoka, Kaoru; Fujiyoshi, Yoshinori; Smith, Barbara L.; Agre, Peter; Engel, Andreas (June 1997). "The three-dimensional structure of aquaporin-1". Nature. 387 (6633): 624–627. doi:10.1038/42512. ISSN 0028-0836.
  5. ^ Laschkarew, W. E.; Usyskin, I. D. (1933). "Die Bestimmung der Lage der Wasserstoffionen im NH4Cl-Kristallgitter durch Elektronenbeugung". Zeitschrift für Physik (in German). 85 (9–10): 618–630. doi:10.1007/BF01331003. ISSN 1434-6001.
  6. ^ Takayanagi, K.; Tanishiro, Y.; Takahashi, M.; Takahashi, S. (1985-05-01). "Structural analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 3 (3): 1502–1506. doi:10.1116/1.573160. ISSN 0734-2101.
  7. ^ Vincent, R.; Midgley, P.A. (1994). "Double conical beam-rocking system for measurement of integrated electron diffraction intensities". Ultramicroscopy. 53 (3): 271–282. doi:10.1016/0304-3991(94)90039-6.
  8. ^ VAINSHTEIN, B.K. (1964), "Experimental Electron Diffraction Structure Investigations", Structure Analysis by Electron Diffraction, Elsevier, pp. 295–390, retrieved 2024-05-01
  9. ^ Dorset, D. L. (1995-08-31). Structural Electron Crystallography. Springer Science & Business Media. ISBN 978-0-306-45049-5.
  10. ^ Shi, Dan; Nannenga, Brent L; de la Cruz, M Jason; Liu, Jinyang; Sawtelle, Steven; Calero, Guillermo; Reyes, Francis E; Hattne, Johan; Gonen, Tamir (May 2016). "The collection of MicroED data for macromolecular crystallography". Nature Protocols. 11 (5): 895–904. doi:10.1038/nprot.2016.046. ISSN 1754-2189. PMC 5357465. PMID 27077331.
  11. ^ de la Cruz, M Jason; Hattne, Johan; Shi, Dan; Seidler, Paul; Rodriguez, Jose; Reyes, Francis E; Sawaya, Michael R; Cascio, Duilio; Weiss, Simon C (2017). "Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED". Nature Methods. 14 (4): 399–402. doi:10.1038/nmeth.4178. ISSN 1548-7091. PMC 5376236. PMID 28192420.
  12. ^ Hattne, Johan; Reyes, Francis E.; Nannenga, Brent L.; Shi, Dan; de la Cruz, M. Jason; Leslie, Andrew G. W.; Gonen, Tamir (2015-07-01). "MicroED data collection and processing". Acta Crystallographica Section A. 71 (4): 353–360. doi:10.1107/s2053273315010669. ISSN 2053-2733. PMC 4487423. PMID 26131894.
  13. ^ Zatsepin, Nadia A; Li, Chufeng; Colasurd, Paige; Nannenga, Brent L (October 2019). "The complementarity of serial femtosecond crystallography and MicroED for structure determination from microcrystals". Current Opinion in Structural Biology. 58: 286–293. doi:10.1016/j.sbi.2019.06.004. PMC 6778504. PMID 31345629.
  14. ^ Nannenga, Brent L.; Gonen, Tamir (May 2019). "The cryo-EM method microcrystal electron diffraction (MicroED)". Nature Methods. 16 (5): 369–379. doi:10.1038/s41592-019-0395-x. ISSN 1548-7091. PMC 6568260. PMID 31040436.