Minimax theorem

In the mathematical area of game theory and of convex optimization, a minimax theorem is a theorem that claims that

under certain conditions on the sets and and on the function .[1] It is always true that the left-hand side is at most the right-hand side (max–min inequality) but equality only holds under certain conditions identified by minimax theorems. The first theorem in this sense is von Neumann's minimax theorem about two-player zero-sum games published in 1928,[2] which is considered the starting point of game theory. Von Neumann is quoted as saying "As far as I can see, there could be no theory of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was proved".[3] Since then, several generalizations and alternative versions of von Neumann's original theorem have appeared in the literature.[4][5]

  1. ^ Simons, Stephen (1995), Du, Ding-Zhu; Pardalos, Panos M. (eds.), "Minimax Theorems and Their Proofs", Minimax and Applications, Boston, MA: Springer US, pp. 1–23, doi:10.1007/978-1-4613-3557-3_1, ISBN 978-1-4613-3557-3, retrieved 2024-10-27
  2. ^ Von Neumann, J. (1928). "Zur Theorie der Gesellschaftsspiele". Math. Ann. 100: 295–320. doi:10.1007/BF01448847. S2CID 122961988.
  3. ^ John L Casti (1996). Five golden rules: great theories of 20th-century mathematics – and why they matter. New York: Wiley-Interscience. p. 19. ISBN 978-0-471-00261-1.
  4. ^ Du, Ding-Zhu; Pardalos, Panos M., eds. (1995). Minimax and Applications. Boston, MA: Springer US. ISBN 9781461335573.
  5. ^ Brandt, Felix; Brill, Markus; Suksompong, Warut (2016). "An ordinal minimax theorem". Games and Economic Behavior. 95: 107–112. arXiv:1412.4198. doi:10.1016/j.geb.2015.12.010. S2CID 360407.