Mipmap

In computer graphics, mipmaps (also MIP maps) or pyramids[1][2][3] are pre-calculated, optimized sequences of images, each of which is a progressively lower resolution representation of the previous. The height and width of each image, or level, in the mipmap is a factor of two smaller than the previous level. Mipmaps do not have to be square. They are intended to increase rendering speed and reduce aliasing artifacts. A high-resolution mipmap image is used for high-density samples, such as for objects close to the camera; lower-resolution images are used as the object appears farther away. This is a more efficient way of downscaling a texture than sampling all texels in the original texture that would contribute to a screen pixel; it is faster to take a constant number of samples from the appropriately downfiltered textures. Mipmaps are widely used in 3D computer games, flight simulators, other 3D imaging systems for texture filtering, and 2D and 3D GIS software. Their use is known as mipmapping. The letters MIP in the name are an acronym of the Latin phrase multum in parvo, meaning "much in little".[4]

Since mipmaps, by definition, are pre-allocated, additional storage space is required to take advantage of them. They are also related to wavelet compression. Mipmap textures are used in 3D scenes to decrease the time required to render a scene. They also improve image quality by reducing aliasing and Moiré patterns that occur at large viewing distances,[5] at the cost of 33% more memory per texture.

  1. ^ "Texture Filtering with Mipmaps (Direct3D 9)". microsoft.com. Microsoft.
  2. ^ "Texture Filtering with Mipmaps". microsoft.com. Microsoft. April 8, 2010.
  3. ^ "Mipmap Texturing" (PDF). Retrieved December 10, 2019.
  4. ^ Williams, Lance. "Pyramidal Parametrics" (PDF). Archived from the original (PDF) on 2014-04-14. Retrieved 2012-09-25.
  5. ^ "Anti-Aliasing Problem and Mipmapping". textureingraphics. 2011-12-13. Retrieved 2019-02-21.