A Miyake event is an observed sharp enhancement of the production of cosmogenic isotopes by cosmic rays. It can be marked by a spike in the concentration of radioactive carbonisotope14 C in tree rings, as well as 10 Be and 36 Cl in ice cores, which are all independently dated. At present, five significant events are known (7176 BCE, 5259 BCE, 660 BCE, 774 CE, 993 CE) for which the spike in 14 C is quite remarkable, i.e. above 1% rise over a period of 2 years, and four more events (12,350BCE,[1] 5410 BCE, 1052 CE, 1279 CE) need independent confirmation. It is not known how often Miyake events occur, but from the available data it is estimated to be every 400–2400 years.[2]
There is strong evidence that Miyake events are caused by extreme solar particle events[3][4] and they are likely related to super-flares discovered on solar-like stars.[4][5] Although Miyake events are based on extreme year-to-year rises of 14 C concentration, the duration of the periods over which the 14 C levels increase or stay at high levels is longer than one year.[6][7] However, a universal cause and origin of all the events is not yet established in science, and some of the events may be caused by other phenomena coming from outer space (such as a gamma-ray burst).[8]
A recently reported sharp spike in 14 C that occurred between 12,350 and 12,349BCE may represent the largest known Miyake event. This event was identified during a study conducted by an international team of researchers who measured radiocarbon levels in ancient trees recovered from the eroded banks of the Drouzet River, near Gap, France, in the Southern French Alps.[9][10][11] According to the initial study the new event is roughly twice the size of the Δ14 C increase for more recent 774CE and 993CE events, but the strength of the corresponding solar storm is not yet assessed. However, the newly discovered 12,350 BCE event has not yet been independently confirmed in wood from other regions, nor it is reliably supported by a clear corresponding spike in other isotopes[10] (such as beryllium-10) that are usually used in combination for absolute radiometric dating.
A Miyake event occurring in modern conditions might have significant impacts on global technological infrastructure such as satellites, telecommunications, and power grids.[7][12][13]
^Zhang, Qingyuan; Sharma, Utkarsh; Dennis, Jordan A.; Scifo, Andrea; Kuitems, Margot; Büntgen, Ulf; Owens, Mathew J.; Dee, Michael W.; Pope, Benjamin J. S. (October 2022). "Modelling cosmic radiation events in the tree-ring radiocarbon record". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 478 (2266). arXiv:2210.13775. Bibcode:2022RSPSA.47820497Z. doi:10.1098/rspa.2022.0497.
^Brehm, Nicolas; Christl, Marcus; Knowles, Timothy D. J.; Casanova, Emmanuelle; Evershed, Richard P.; Adolphi, Florian; Muscheler, Raimund; Synal, Hans-Arno; Mekhaldi, Florian; Paleari, Chiara I.; Leuschner, Hanns-Hubert; Bayliss, Alex; Nicolussi, Kurt; Pichler, Thomas; Schlüchter, Christian; Pearson, Charlotte L.; Salzer, Matthew W.; Fonti, Patrick; Nievergelt, Daniel; Hantemirov, Rashit; Brown, David M.; Usoskin, Ilya; Wacker, Lukas (7 March 2022). "Tree-rings reveal two strong solar proton events in 7176 and 5259 BCE". Nature Communications. 13 (1): 1196. Bibcode:2022NatCo..13.1196B. doi:10.1038/s41467-022-28804-9. PMC8901681. PMID35256613.
^Cosmic-ray Research Division (17 November 2021). "Radiocarbon (14C)". Nagoya, Japan: Institute for Space–Earth Environmental Research, Nagoya University. Archived from the original on 29 May 2024. Retrieved 6 March 2023.