This article needs additional citations for verification. (January 2021) |
Morphological parsing, in natural language processing, is the process of determining the morphemes from which a given word is constructed. It must be able to distinguish between orthographic rules and morphological rules. For example, the word 'foxes' can be decomposed into 'fox' (the stem), and 'es' (a suffix indicating plurality).
The generally accepted approach to morphological parsing is through the use of a finite state transducer (FST), which inputs words and outputs their stem and modifiers. The FST is initially created through algorithmic parsing of some word source, such as a dictionary, complete with modifier markups.
Another approach is through the use of an indexed lookup method, which uses a constructed radix tree. This is not an often-taken route because it breaks down for morphologically complex languages.
With the advancement of neural networks in natural language processing, it became less common to use FST for morphological analysis, especially for languages for which there is a lot of available training data. For such languages, it is possible to build character-level language models without explicit use of a morphological parser.[1]