Motility

Cell division. All cells can be considered motile for having the ability to divide into two new daughter cells.[1]

Motility is the ability of an organism to move independently using metabolic energy. This biological concept encompasses movement at various levels, from whole organisms to cells and subcellular components.

Motility is observed in animals, microorganisms, and even some plant structures, playing crucial roles in activities such as foraging, reproduction, and cellular functions. It is genetically determined but can be influenced by environmental factors.

In multicellular organisms, motility is facilitated by systems like the nervous and musculoskeletal systems, while at the cellular level, it involves mechanisms such as amoeboid movement and flagellar propulsion. These cellular movements can be directed by external stimuli, a phenomenon known as taxis. Examples include chemotaxis (movement along chemical gradients) and phototaxis (movement in response to light).

Motility also includes physiological processes like gastrointestinal movements and peristalsis. Understanding motility is important in biology, medicine, and ecology, as it impacts processes ranging from bacterial behavior to ecosystem dynamics.

  1. ^ Clegg, Chris (2008). "3.2 Cells make organisms". Edexcel biology for AS (6th ed.). London: Hodder Murray. p. 111. ISBN 978-0-340-96623-5. Division of the cytoplasm, known as cytokinesis, follows telophase. During division, cell organelles such as mitochondria and chloroplasts become distributed evenly between the cells. In animal cells, division is by in-tucking of the plasma membrane at the equator of the spindle, 'pinching' the cytoplasm in half (Figure 3.15). In plant cells, the Golgi apparatus forms vesicles of new cell wall materials which collect along the line of the equator of the spindle, known as the cell plate. Here, the vesicles coalesce forming the new plasma membranes and cell walls between the two cells (Figure 3.17).