Multiomics

Number of citations of the terms "Multiomics" and "Multi-omics" in PubMed until the 31st December 2021.

Multiomics, multi-omics, integrative omics, "panomics" or "pan-omics" is a biological analysis approach in which the data sets are multiple "omes", such as the genome, proteome, transcriptome, epigenome, metabolome, and microbiome (i.e., a meta-genome and/or meta-transcriptome, depending upon how it is sequenced);[1][2][3] in other words, the use of multiple omics technologies to study life in a concerted way. By combining these "omes", scientists can analyze complex biological big data to find novel associations between biological entities, pinpoint relevant biomarkers and build elaborate markers of disease and physiology. In doing so, multiomics integrates diverse omics data to find a coherently matching geno-pheno-envirotype relationship or association.[4] The OmicTools service lists more than 99 softwares related to multiomic data analysis, as well as more than 99 databases on the topic.

Systems biology approaches are often based upon the use of panomic analysis data.[5][6] The American Society of Clinical Oncology (ASCO) defines panomics as referring to "the interaction of all biological functions within a cell and with other body functions, combining data collected by targeted tests ... and global assays (such as genome sequencing) with other patient-specific information."[7]

  1. ^ Bersanelli, Matteo; Mosca, Ettore; Remondini, Daniel; Giampieri, Enrico; Sala, Claudia; Castellani, Gastone; Milanesi, Luciano (1 January 2016). "Methods for the integration of multi-omics data: mathematical aspects". BMC Bioinformatics. 17 (2): S15. doi:10.1186/s12859-015-0857-9. ISSN 1471-2105. PMC 4959355. PMID 26821531.
  2. ^ Bock, Christoph; Farlik, Matthias; Sheffield, Nathan C. (August 2016). "Multi-Omics of Single Cells: Strategies and Applications". Trends in Biotechnology. 34 (8): 605–608. doi:10.1016/j.tibtech.2016.04.004. PMC 4959511. PMID 27212022.
  3. ^ Vilanova, Cristina; Porcar, Manuel (26 July 2016). "Are multi-omics enough?". Nature Microbiology. 1 (8): 16101. doi:10.1038/nmicrobiol.2016.101. PMID 27573112. S2CID 3835720.
  4. ^ Tarazona, S., Balzano-Nogueira, L., & Conesa, A. (2018). Multiomics Data Integration in Time Series Experiments. doi:10.1016/bs.coac.2018.06.005
  5. ^ PSB'14 Cancer Panomics Session Archived 2013-09-23 at the Wayback Machine
  6. ^ The Molecular Landscape of Cancer: Using Panomics to Drive Change Archived 2013-11-09 at the Wayback Machine
  7. ^ "Glossary". Accelerating Progress Against Cancer: ASCO's blueprint for transforming clinical and translational cancer research (PDF). American Society of Clinical Oncology. 2011. p. 28. Retrieved 13 September 2013.