This article includes a list of general references, but it lacks sufficient corresponding inline citations. (October 2009) |
Part of a series on statistics |
Probability theory |
---|
In logic and probability theory, two events (or propositions) are mutually exclusive or disjoint if they cannot both occur at the same time. A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails, but not both.
In the coin-tossing example, both outcomes are, in theory, collectively exhaustive, which means that at least one of the outcomes must happen, so these two possibilities together exhaust all the possibilities.[1] However, not all mutually exclusive events are collectively exhaustive. For example, the outcomes 1 and 4 of a single roll of a six-sided die are mutually exclusive (both cannot happen at the same time) but not collectively exhaustive (there are other possible outcomes; 2,3,5,6).
The sample space is the collection or set of 'all possible' distinct (collectively exhaustive and mutually exclusive) outcomes of an experiment.