Nanobubble

A nanobubble is a small sub-micrometer gas-containing cavity, or bubble, in aqueous solutions with unique properties caused by high internal pressure, small size and surface charge.[1][2] Nanobubbles generally measure between 70-150 nanometers in size [3][4] and less than 200 nanometers in diameter[5][6] and are known for their longevity and stability, low buoyancy, negative surface charge, high surface area per volume, high internal pressure, and high gas transfer rates.[2][7][8][9]

Nanobubbles can be formed by injecting any gas into a liquid.[10][11] Because of their unique properties, they can interact with and affect physical, chemical, and biological processes.[12] They have been used in technology applications for industries such as wastewater, environmental engineering, agriculture, aquaculture, medicine and biomedicine, and others.[7][13][14]

  1. ^ "Nanobubble - an overview". sciencedirect.com. Retrieved 2024-03-31.
  2. ^ a b Nirmalkar, N.; Pacek, A. W.; Barigou, M. (2018-09-18). "On the Existence and Stability of Bulk Nanobubbles". Langmuir. 34 (37): 10964–10973. doi:10.1021/acs.langmuir.8b01163. ISSN 0743-7463. PMID 30179016.
  3. ^ Davey, Abby (2022-06-27). "Moleaer: Tiny bubble tech makes a big splash". H2O Global News. Retrieved 2024-03-31.
  4. ^ Press, Aju (2022-10-27). "Fawoo Nanotech develops nanobubble generator to produce hydrogen in large quantities". Aju Press. Retrieved 2024-03-31.
  5. ^ "Morphological and physiological responses". cabidigitallibrary.org.
  6. ^ Shah, Rahul; Phatak, Niraj; Choudhary, Ashok; Gadewar, Sakshi; Ajazuddin; Bhattacharya, Sankha (2024). "Exploring the Theranostic Applications and Prospects of Nanobubbles". Current Pharmaceutical Biotechnology. 25 (9): 1167–1181. doi:10.2174/0113892010248189231010085827. PMID 37861011. Retrieved 2024-03-31.
  7. ^ a b Lyu, Tao; Wu, Shubiao; Mortimer, Robert J. G.; Pan, Gang (2019-07-02). "Nanobubble Technology in Environmental Engineering: Revolutionization Potential and Challenges". Environmental Science & Technology. 53 (13): 7175–7176. Bibcode:2019EnST...53.7175L. doi:10.1021/acs.est.9b02821. ISSN 0013-936X. PMID 31180652.
  8. ^ Azevedo, A.; Etchepare, R.; Calgaroto, S.; Rubio, J. (2016-08-01). "Aqueous dispersions of nanobubbles: Generation, properties and features". Minerals Engineering. 94: 29–37. Bibcode:2016MiEng..94...29A. doi:10.1016/j.mineng.2016.05.001. ISSN 0892-6875.
  9. ^ Aluthgun Hewage, Shaini; Meegoda, Jay N. (2022). "Molecular dynamics simulation of bulk nanobubbles". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 650. doi:10.1016/j.colsurfa.2022.129565.
  10. ^ Wine, Gaby. "Meet the Israeli scientist curing cancer with bubbles". thejc.com. Retrieved 2024-03-31.
  11. ^ "The Proven Benefits of Nanobubbles". moleaer.com. Retrieved May 5, 2024.
  12. ^ "Nanobubbles (ultrafine bubbles)". water.lsbu.ac.uk. Retrieved 2024-03-31.
  13. ^ Foudas, Anastasios W.; Kosheleva, Ramonna I.; Favvas, Evangelos P.; Kostoglou, Margaritis; Mitropoulos, Athanasios C.; Kyzas, George Z. (2023-01-01). "Fundamentals and applications of nanobubbles: A review". Chemical Engineering Research and Design. 189: 64–86. Bibcode:2023CERD..189...64F. doi:10.1016/j.cherd.2022.11.013. ISSN 0263-8762.
  14. ^ Mahasri, G.; Saskia, A.; Apandi, P. S.; Dewi, N. N.; Rozi; Usuman, N. M. (2018). "Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for nile tilapia (Oreochromis niloticus)". IOP Conference Series: Earth and Environmental Science. 137 (1): 012046. Bibcode:2018E&ES..137a2046M. doi:10.1088/1755-1315/137/1/012046.