Nathaniel J. Fisch

Nathaniel Joseph Fisch
Born (1950-12-29) December 29, 1950 (age 73)
NationalityAmerican
EducationMassachusetts Institute of Technology (B.S., M.S., Ph.D.)
Awards
Scientific career
FieldsPlasma physics
Thesis Confining and heating a toroidal plasma with RF power.  (1978)
Websitew3.pppl.gov/~fisch/

Nathaniel Joseph Fisch is an American plasma physicist known for pioneering the excitation of electric currents in plasmas using electromagnetic waves,[1][2] which was then used in tokamak experiments.[3][4] This contributed to an increased understanding of plasma wave–particle interactions in the field for which he was awarded the James Clerk Maxwell Prize for Plasma Physics in 2005 and the Hannes Alfvén Prize in 2015.

Fisch's research also involve inertial fusion,[5][6] as well as methods to generate intensive laser fields to accelerate particles,[7] such as the ones used in plasma thrusters.[8][9] He is also known to have worked on the hydrodynamics of charged liquids,[10] petroleum refinement,[11] and pattern recognition.[12]

  1. ^ Karney, Charles F. F.; Fisch, Nathaniel J. (1979). "Numerical studies of current generation by radio-frequency traveling waves". The Physics of Fluids. 22 (9): 1817–1824. Bibcode:1979PhFl...22.1817K. doi:10.1063/1.862787. ISSN 0031-9171.
  2. ^ Fisch, N. J.; Boozer, A. H. (1980). "Creating an Asymmetric Plasma Resistivity with Waves". Physical Review Letters. 45 (9): 720–722. Bibcode:1980PhRvL..45..720F. doi:10.1103/PhysRevLett.45.720.
  3. ^ Fisch, Nathaniel J. (1987). "Theory of current drive in plasmas". Reviews of Modern Physics. 59 (1): 175–234. Bibcode:1987RvMP...59..175F. doi:10.1103/RevModPhys.59.175.
  4. ^ Fisch, Nathaniel J. (1978). "Confining a Tokamak Plasma with rf-Driven Currents". Physical Review Letters. 41 (13): 873–876. Bibcode:1978PhRvL..41..873F. doi:10.1103/PhysRevLett.41.873.
  5. ^ Malkin, V. M.; Fisch, N. J. (2002). "Collective Deceleration of Relativistic Electrons Precisely in the Core of an Inertial-Fusion Target". Physical Review Letters. 89 (12): 125004. Bibcode:2002PhRvL..89l5004M. doi:10.1103/PhysRevLett.89.125004. PMID 12225091.
  6. ^ Son, S.; Fisch, N. J. (2004). "Aneutronic fusion in a degenerate plasma". Physics Letters A. 329 (1): 76–82. Bibcode:2004PhLA..329...76S. doi:10.1016/j.physleta.2004.06.054. ISSN 0375-9601.
  7. ^ Malkin, V. M.; Shvets, G.; Fisch, N. J. (1999). "Fast Compression of Laser Beams to Highly Overcritical Powers". Physical Review Letters. 82 (22): 4448–4451. Bibcode:1999PhRvL..82.4448M. doi:10.1103/PhysRevLett.82.4448.
  8. ^ Raitses, Y.; Staack, D.; Keidar, M.; Fisch, N. J. (2005). "Electron-wall interaction in Hall thrusters". Physics of Plasmas. 12 (5): 057104. Bibcode:2005PhPl...12e7104R. doi:10.1063/1.1891747. hdl:2027.42/87763. ISSN 1070-664X.
  9. ^ Raitses, Y.; Smirnov, A.; Fisch, N. J. (2009). "Effects of enhanced cathode electron emission on Hall thruster operation". Physics of Plasmas. 16 (5): 057106. Bibcode:2009PhPl...16e7106R. doi:10.1063/1.3131282. ISSN 1070-664X.
  10. ^ Zweben, Stewart J.; Gueroult, Renaud; Fisch, Nathaniel J. (September 12, 2018). "Plasma mass separation". Physics of Plasmas. 25 (9): 090901. Bibcode:2018PhPl...25i0901Z. doi:10.1063/1.5042845. ISSN 1070-664X. OSTI 1472074. S2CID 226888946.
  11. ^ Gueroult, Renaud; Zweben, Stewart J.; Fisch, Nathaniel J.; Rax, J.-M. (2019). "E × B configurations for high-throughput plasma mass separation: An outlook on possibilities and challenges". Physics of Plasmas. 26 (4): 043511. Bibcode:2019PhPl...26d3511G. doi:10.1063/1.5083229. ISSN 1070-664X. OSTI 1558921. S2CID 146108817.
  12. ^ Solodov, A. A.; Malkin, V. M.; Fisch, N. J. (2003). "Random density inhomogeneities and focusability of the output pulses for plasma-based powerful backward Raman amplifiers". Physics of Plasmas. 10 (6): 2540–2544. Bibcode:2003PhPl...10.2540S. doi:10.1063/1.1576761. ISSN 1070-664X.