NetApp FAS

A NetApp FAS is a computer storage product by NetApp running the ONTAP operating system; the terms ONTAP, AFF, ASA, FAS are often used as synonyms. "Filer" is also used as a synonym although this is not an official name. There are three types of FAS systems: Hybrid, All-Flash, and All SAN Array:

  1. NetApp proprietary custom-build hardware appliances with HDD or SSD drives called hybrid Fabric-Attached Storage (or simply FAS)[1]
  2. NetApp proprietary custom-build hardware appliances with only SSD drives and optimized ONTAP for low latency called ALL-Flash FAS (or simply AFF)
  3. All SAN Array build on top of AFF platform, and provide only SAN-based data protocol connectivity.

ONTAP can serve storage over a network using file-based protocols such as NFS and SMB, also block-based protocols, such as the SCSI over the Fibre Channel Protocol on a Fibre Channel network, Fibre Channel over Ethernet (FCoE), iSCSI, and FC-NVMe transport layer. ONTAP-based systems that can serve both SAN and NAS protocols called Unified ONTAP, AFF systems with ASA identity called All-SAN.

NetApp storage systems running ONTAP implement their physical storage in large disk arrays.

While most large-storage systems are implemented with commodity computers with an operating system such as Microsoft Windows Server, VxWorks or tuned Linux, ONTAP-based hardware appliances use highly customized hardware and the proprietary Data ONTAP operating system with WAFL file system, all originally designed by NetApp founders David Hitz and James Lau specifically for storage-serving purposes. ONTAP is NetApp's internal operating system, specially optimized for storage functions at high and low levels. It boots from FreeBSD as a stand-alone kernel-space module and uses some functions of FreeBSD (command interpreter and drivers stack, for example).

All NetApp ONTAP-based hardware appliances have battery-backed non-volatile random access memory or NVDIMM, referred to as NVRAM or NVDIMM,[citation needed] which allows them to commit writes to stable storage more quickly than traditional systems with only volatile memory. Early storage systems connected to external disk enclosures via parallel SCSI, while modern models (as of 2009) use fibre channel and SAS (Serial Attach SCSI) SCSI transport protocols. The disk enclosures (shelves) use fibre channel hard disk drives, as well as parallel ATA, serial ATA and Serial attached SCSI. Starting with AFF A800 NVRAM PCI card no longer used for NVLOGs, it was replaced with NVDIMM memory directly connected to the memory bus.

Implementers often organize two storage systems in a high-availability cluster with a private high-speed link, either Fibre Channel, InfiniBand, 10 Gigabit Ethernet, 40 Gigabit Ethernet or 100 Gigabit Ethernet. One can additionally group such clusters together under a single namespace when running in the "cluster mode" of the Data ONTAP 8 operating system.

  1. ^ Nabrzyski, Jarek; Schopf, Jennifer M.; Węglarz, Jan (2004). Grid Resource Management: State of the Art and Future Trends. Springer. p. 342. ISBN 978-1-4020-7575-9. Retrieved 11 June 2012.