Neural control of limb stiffness

As humans move through their environment, they must change the stiffness of their joints in order to effectively interact with their surroundings. Stiffness is the degree to a which an object resists deformation when subjected to a known force. This idea is also referred to as impedance, however, sometimes the idea of deformation under a given load is discussed under the term "compliance" which is the opposite of stiffness (defined as the amount an object deforms under a certain known load). In order to effectively interact with their environment, humans must adjust the stiffness of their limbs. This is accomplished via the co-contraction of antagonistic muscle groups.[1][2]

Humans use neural control along with the mechanical constraints of the body to adjust this stiffness as the body performs various tasks. It has been shown that humans change the stiffness of their limbs as they perform tasks such as hopping,[3] performing accurate reaching tasks,[4] or running on different surfaces.[5]

While the exact method by which this neural-modulation of limb stiffness occurs is unknown, many different hypotheses have been proposed. A thorough understanding of how and why the brain controls limb stiffness could lead to improvements in many robotic technologies that attempt to mimic human movement.[2]

  1. ^ Hogan, Neville (1985). "The Mechanics of Multi-joint Posture and Movement Control". Biological Cybernetics. 52 (5): 315–331. doi:10.1007/bf00355754. PMID 4052499. S2CID 25966675.
  2. ^ a b Van Ham, R.; Sugar, T.G.; Vanderborght, B.; Hollander, K.W.; Lefeber, D. (2009). "Compliant Actuator Designs". IEEE Robotics & Automation Magazine. 16 (3): 81–94. doi:10.1109/mra.2009.933629. S2CID 50682770.
  3. ^ Oliver, J.L.; Smith, P.M. (2010). "Neural Control of Leg Stiffness During Hopping in Boys and Men". Journal of Electromyography and Kinesiology. 20 (5): 973–979. doi:10.1016/j.jelekin.2010.03.011. PMID 20409733.
  4. ^ Lametti, Daniel R.; Houle, Guillaume; Ostry, David J. (2007). "Control of Movement Variability and the Regulation of Limb Impedance". Journal of Neurophysiology. 98 (6): 3516–3524. doi:10.1152/jn.00970.2007. PMID 17913978.
  5. ^ Ferris, Daniel P.; Louie, Micky; Farley, Claire T. (1998). "Running in the Real World: Adjusting Leg Stiffness for Different Surfaces". Proceedings of the Royal Society B: Biological Sciences. 265 (1400): 989–994. doi:10.1098/rspb.1998.0388. PMC 1689165. PMID 9675909.