Neutral atom quantum computer

A neutral atom quantum computer is a modality of quantum computers built out of Rydberg atoms;[1][2][3][4][5] this modality has many commonalities with trapped-ion quantum computers. As of December 2023, the concept has been used to demonstrate a 48 logical qubit processor.[6][7]

To perform computation, the atoms are first trapped in a magneto-optical trap.[6] Qubits are then encoded in the energy levels of the atoms. Initialization and operation of the computer is performed via the application of lasers on the qubits.[8] For example, the laser can accomplish arbitrary single qubit gates and a gate for universal quantum computation. The gate is carried out by leveraging the Rydberg blockade which leads to strong interactions when the qubits are physically close to each other. To perform a gate a Rydberg pulse is applied to the control qubit, a on the target qubit and then a on the control.[1] Measurement is enforced at the end of the computation with a camera that generates an image of the outcome by measuring the fluorescence of the atoms.[6]

  1. ^ a b Saffman, Mark; Walker, Thad G; Klaus, Mølmer (2010). "Quantum information with Rydberg atoms". Rev. Mod. Phys. 82 (3): 2313–2363. arXiv:0909.4777. Bibcode:2010RvMP...82.2313S. doi:10.1103/RevModPhys.82.2313. S2CID 14285764.
  2. ^ Brennen, Gavin K.; Caves, Carlton M.; Jessen, Poul S.; Deutsch, Ivan H. (1 February 1999). "Quantum Logic Gates in Optical Lattices". Physical Review Letters. 82 (5): 1060–1063. arXiv:quant-ph/9806021. Bibcode:1999PhRvL..82.1060B. doi:10.1103/PhysRevLett.82.1060.
  3. ^ Beige, A; Huelga, SF; Knight, PL; Plenio, MB; Thompson, RC. "Coherent manipulation of two dipole-dipole interacting ions". Journal of Modern Optics. 47 (2/3): 401–414. arXiv:quant-ph/9903059. doi:10.1080/09500340008244051.
  4. ^ Briegel, H.-J.; Calarco, T.; Jaksch, D.; Cirac, J. I.; Zoller, P. (February 2000). "Quantum computing with neutral atoms". Journal of Modern Optics. 47 (2–3): 415–451. arXiv:quant-ph/9904010. Bibcode:2000JMOp...47..415B. doi:10.1080/09500340008244052. ISSN 0950-0340.
  5. ^ Jaksch, D.; Cirac, J. I.; Zoller, P.; Rolston, S. L.; Côté, R.; Lukin, M. D. (4 September 2000). "Fast Quantum Gates for Neutral Atoms". Physical Review Letters. 85 (10): 2208–2211. arXiv:quant-ph/0004038. Bibcode:2000PhRvL..85.2208J. doi:10.1103/PhysRevLett.85.2208. PMID 10970499.
  6. ^ a b c Bluvstein, Dolev; Evered, Simon J.; Geim, Alexandra A.; Li, Sophie H.; Zhou, Hengyun; Manovitz, Tom; Ebadi, Sepehr; Cain, Madelyn; Kalinowski, Marcin; Hangleiter, Dominik; Bonilla Ataides, J. Pablo; Maskara, Nishad; Cong, Iris; Gao, Xun; Sales Rodriguez, Pedro (2024-02-01). "Logical quantum processor based on reconfigurable atom arrays". Nature. 626 (7997): 58–65. arXiv:2312.03982. Bibcode:2024Natur.626...58B. doi:10.1038/s41586-023-06927-3. ISSN 0028-0836. PMC 10830422. PMID 38056497.
  7. ^ Yirka, Bob (2023-12-07). "Using logical qubits to make a quantum computer that can correct its errors". Retrieved 2024-02-10.
  8. ^ Genkina, Dina (2013-10-18). "Neutral-atom quantum computers are having a moment". Retrieved 2013-10-18.