A neutral atom quantum computer is a modality of quantum computers built out of Rydberg atoms ;[ 1] [ 2] [ 3] [ 4] [ 5] this modality has many commonalities with trapped-ion quantum computers . As of December 2023, the concept has been used to demonstrate a 48 logical qubit processor.[ 6] [ 7]
To perform computation, the atoms are first trapped in a magneto-optical trap .[ 6] Qubits are then encoded in the energy levels of the atoms. Initialization and operation of the computer is performed via the application of lasers on the qubits.[ 8] For example, the laser can accomplish arbitrary single qubit gates and a
C
Z
{\displaystyle CZ}
gate for universal quantum computation .
The
C
Z
{\displaystyle CZ}
gate is carried out by leveraging the Rydberg blockade which leads to strong interactions when the qubits are physically close to each other. To perform a
C
Z
{\displaystyle CZ}
gate a Rydberg
π
{\displaystyle \pi }
pulse is applied to the control qubit, a
2
π
{\displaystyle 2\pi }
on the target qubit and then a
π
{\displaystyle \pi }
on the control.[ 1] Measurement is enforced at the end of the computation with a camera that generates an image of the outcome by measuring the fluorescence of the atoms.[ 6]
^ a b Saffman, Mark; Walker, Thad G; Klaus, Mølmer (2010). "Quantum information with Rydberg atoms" . Rev. Mod. Phys . 82 (3): 2313–2363. arXiv :0909.4777 . Bibcode :2010RvMP...82.2313S . doi :10.1103/RevModPhys.82.2313 . S2CID 14285764 .
^ Brennen, Gavin K.; Caves, Carlton M.; Jessen, Poul S.; Deutsch, Ivan H. (1 February 1999). "Quantum Logic Gates in Optical Lattices" . Physical Review Letters . 82 (5): 1060–1063. arXiv :quant-ph/9806021 . Bibcode :1999PhRvL..82.1060B . doi :10.1103/PhysRevLett.82.1060 .
^ Beige, A; Huelga, SF; Knight, PL; Plenio, MB; Thompson, RC. "Coherent manipulation of two dipole-dipole interacting ions" . Journal of Modern Optics . 47 (2/3): 401–414. arXiv :quant-ph/9903059 . doi :10.1080/09500340008244051 .
^ Briegel, H.-J.; Calarco, T.; Jaksch, D.; Cirac, J. I.; Zoller, P. (February 2000). "Quantum computing with neutral atoms" . Journal of Modern Optics . 47 (2–3): 415–451. arXiv :quant-ph/9904010 . Bibcode :2000JMOp...47..415B . doi :10.1080/09500340008244052 . ISSN 0950-0340 .
^ Jaksch, D.; Cirac, J. I.; Zoller, P.; Rolston, S. L.; Côté, R.; Lukin, M. D. (4 September 2000). "Fast Quantum Gates for Neutral Atoms" . Physical Review Letters . 85 (10): 2208–2211. arXiv :quant-ph/0004038 . Bibcode :2000PhRvL..85.2208J . doi :10.1103/PhysRevLett.85.2208 . PMID 10970499 .
^ a b c Bluvstein, Dolev; Evered, Simon J.; Geim, Alexandra A.; Li, Sophie H.; Zhou, Hengyun; Manovitz, Tom; Ebadi, Sepehr; Cain, Madelyn; Kalinowski, Marcin; Hangleiter, Dominik; Bonilla Ataides, J. Pablo; Maskara, Nishad; Cong, Iris; Gao, Xun; Sales Rodriguez, Pedro (2024-02-01). "Logical quantum processor based on reconfigurable atom arrays" . Nature . 626 (7997): 58–65. arXiv :2312.03982 . Bibcode :2024Natur.626...58B . doi :10.1038/s41586-023-06927-3 . ISSN 0028-0836 . PMC 10830422 . PMID 38056497 .
^ Yirka, Bob (2023-12-07). "Using logical qubits to make a quantum computer that can correct its errors" . Retrieved 2024-02-10 .
^ Genkina, Dina (2013-10-18). "Neutral-atom quantum computers are having a moment" . Retrieved 2013-10-18 .