In mathematics, a nilmanifold is a differentiable manifold which has a transitive nilpotent group of diffeomorphisms acting on it. As such, a nilmanifold is an example of a homogeneous space and is diffeomorphic to the quotient space , the quotient of a nilpotent Lie group N modulo a closed subgroup H. This notion was introduced by Anatoly Mal'cev in 1949.[1]
In the Riemannian category, there is also a good notion of a nilmanifold. A Riemannian manifold is called a homogeneous nilmanifold if there exist a nilpotent group of isometries acting transitively on it. The requirement that the transitive nilpotent group acts by isometries leads to the following rigid characterization: every homogeneous nilmanifold is isometric to a nilpotent Lie group with left-invariant metric (see Wilson[2]).
Nilmanifolds are important geometric objects and often arise as concrete examples with interesting properties; in Riemannian geometry these spaces always have mixed curvature,[3] almost flat spaces arise as quotients of nilmanifolds,[4] and compact nilmanifolds have been used to construct elementary examples of collapse of Riemannian metrics under the Ricci flow.[5]
In addition to their role in geometry, nilmanifolds are increasingly being seen as having a role in arithmetic combinatorics (see Green–Tao[6]) and ergodic theory (see, e.g., Host–Kra[7]).
:0
was invoked but never defined (see the help page).