Part of a series on |
Regression analysis |
---|
Models |
Estimation |
Background |
In mathematical optimization, the problem of non-negative least squares (NNLS) is a type of constrained least squares problem where the coefficients are not allowed to become negative. That is, given a matrix A and a (column) vector of response variables y, the goal is to find[1]
Here x ≥ 0 means that each component of the vector x should be non-negative, and ‖·‖2 denotes the Euclidean norm.
Non-negative least squares problems turn up as subproblems in matrix decomposition, e.g. in algorithms for PARAFAC[2] and non-negative matrix/tensor factorization.[3][4] The latter can be considered a generalization of NNLS.[1]
Another generalization of NNLS is bounded-variable least squares (BVLS), with simultaneous upper and lower bounds αi ≤ xi ≤ βi.[5]: 291 [6]
chen
was invoked but never defined (see the help page).bro
was invoked but never defined (see the help page).lawson
was invoked but never defined (see the help page).