Nuclear bodies

Nuclear bodies in human embryonic lung cells

Nuclear bodies (also known as nuclear domains or nuclear dots) are biomolecular condensates, membraneless structures found in the cell nuclei of eukaryotic cells.[1] Nuclear bodies include Cajal bodies, the nucleolus, nuclear speckles (also called splicing speckles), histone locus bodies, and promyelocytic leukemia protein (PML) nuclear bodies (also called PML oncogenic dots).[2] Nuclear bodies also include ND10s. ND stands for nuclear domain, and 10 refers to the number of dots seen.[3] Additionally, a nuclear body subtype is a clastosome suggested to be a site of protein degradation.[4]

While biomolecular condensate is a term often used interchangeably with nuclear bodies, the term "condensates" implies the thermodynamic properties of the body are known.[5] Thus, nuclear body (and sometimes nuclear compartment) is a term that is more general and encompasses structures where either the biophysical property is not a condensate or is currently untested.[6]

Nuclear bodies were first seen as prominent interchromatin structures in the nuclei of malignant or hyperstimulated animal cells[7][8] identified using anti-sp100 autoantibodies from primary biliary cirrhosis and subsequently the promyelocytic leukemia (PML) factor, but appear also to be elevated in many autoimmune and cancerous diseases.[9] Nuclear dots are metabolically stable and resistant to nuclease digestion and salt extraction.[10]

  1. ^ Weber SC (June 2017). "Sequence-encoded material properties dictate the structure and function of nuclear bodies". Current Opinion in Cell Biology. 46: 62–71. doi:10.1016/j.ceb.2017.03.003. PMID 28343140.
  2. ^ Zimber A, Nguyen QD, Gespach C (October 2004). "Nuclear bodies and compartments: functional roles and cellular signalling in health and disease". Cellular Signalling. 16 (10): 1085–104. doi:10.1016/j.cellsig.2004.03.020. PMID 15240004.
  3. ^ Rivera-Molina YA, Martínez FP, Tang Q (August 2013). "Nuclear domain 10 of the viral aspect". World Journal of Virology. 2 (3): 110–22. doi:10.5501/wjv.v2.i3.110. PMC 3832855. PMID 24255882.
  4. ^ Lafarga M, Berciano MT, Pena E, Mayo I, Castaño JG, Bohmann D, et al. (August 2002). "Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome". Molecular Biology of the Cell. 13 (8): 2771–82. doi:10.1091/mbc.e02-03-0122. PMC 117941. PMID 12181345.
  5. ^ Banani SF, Lee HO, Hyman AA, Rosen MK (May 2017). "Biomolecular condensates: organizers of cellular biochemistry". Nature Reviews. Molecular Cell Biology. 18 (5): 285–298. doi:10.1038/nrm.2017.7. PMC 7434221. PMID 28225081. S2CID 37694361.
  6. ^ Bhat P, Hanson D, Guttman M (August 2021). "Nuclear compartmentalization as a mechanism for quantitative control of gene expression". Nature Reviews. Molecular Cell Biology. 22 (5): 653–670. doi:10.1038/s41580-021-00387-1. PMID 34341548.
  7. ^ Brasch K, Ochs RL (October 1992). "Nuclear bodies (NBs): a newly "rediscovered" organelle". Experimental Cell Research. 202 (2): 211–23. doi:10.1016/0014-4827(92)90068-J. PMID 1397076.
  8. ^ Sternsdorf T, Grötzinger T, Jensen K, Will H (December 1997). "Nuclear dots: actors on many stages". Immunobiology. 198 (1–3): 307–31. doi:10.1016/s0171-2985(97)80051-4. PMID 9442402.
  9. ^ Pawlotsky JM, Andre C, Metreau JM, Beaugrand M, Zafrani ES, Dhumeaux D (July 1992). "Multiple nuclear dots antinuclear antibodies are not specific for primary biliary cirrhosis". Hepatology. 16 (1): 127–31. doi:10.1002/hep.1840160121. PMID 1319948. S2CID 22729443.
  10. ^ Ascoli CA, Maul GG (March 1991). "Identification of a novel nuclear domain". The Journal of Cell Biology. 112 (5): 785–95. doi:10.1083/jcb.112.5.785. PMC 2288866. PMID 1999457.